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Preface 

This volume contains the proceedings of a workshop initiated by a suggestion of Her- 

bert M. Fried to bring together scientists whose research focuses on large-scale structures 

in various fields of non-linear physics. The meeting, organized by Jean-Daniel Fournier, 

Herbert M. Fried and Pierre-Louis Sulem, was held at the "Citadelle" in Villefranche 

sur Mer (France), 13 - 18 January 1991 and was attended by 45 participants. 

Coherent states, convective and turbulent patterns, inverse cascades, interfaces and 

cooperative phenomena in fluids and plasmas were discussed, together with the imple- 

mentation of concepts of statistical mechanics to particle physics and nuclear matter. 

Special attention was devoted to phenomena such as mixing, fast dynamo and pre- 

dictability, which display macroscopic features, even though generated by small-scale 

dynamical processes. In this context, homoclinic structure, the KAM theorem, Lya- 
punov stability and singularities were addressed. A lecture was delivered on a new 
perturbative technique for non-linear classical and quantum fields. Finally, new results 

concerning the analysis of hierarchically organized objects were presented. 

In collaboration with Springer-Verlag, a special effort was made in order that these 

proceedings be attractive to a large audience. Authors were asked to put their contri- 

bution in perspective. Moreover, about one third of the articles are extended versions 

of conference talks, intended to provide an introductory background to the reader. To 

all the authors and to the Managing Editor of Lecture Notes in Physics, we wish to 

express our gratitude. We also thank all the lecturers and participants for the quality of 

their presentations and the interest of their comments. Finally, we are grateful to Tran 

Thanh Van for valuable advice. The meeting benefitted from partial support from the 

CNRS (astrophysics and mechanical engineering departments), the ACCES program of 
the MinistSre de la Recherche et de la Technologic and the City of Nice through the 

LSpine Committee. 

J.-D. Fournier and P.-L. Sulem 
Nice, July 1991 
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THE PHASE-DIFFUSION EQUATION AND ITS REGULARIZATION 
FOR NATURAL CONVECTIVE PATTERNS 

T. Passot and A.C. Newell 
Department of Mathematics, University of Arizona, Tucson AZ, 85721 

Abstract  

We first present the phase diffusion and mean drift equation which describe con- 
vective patterns in large aspect ratio containers and for arbitrary Rayleigh and Prandtl 
numbers. Some applications are presented such as the prediction of the selected wave- 
number or the instability of loci. We propose in a second step a regularized form of the 
phase diffusion equation able to reproduce the formation and dynamics of defects. 

I. Introduct ion  

Many interesting behaviors of pattern-forming systems described by non-linear par- 
tial differential equations can be captured by standard perturbative techniques when 
the stress parameter is small and/or there exists a spectral gap between the microscopic 
and the macroscopic scales. We are mainly interested here in the latter case, and more 
particularly in the case of Rayleigh-Bhnard convection where only rolls are formed. 

A physical system close to a bifurcation can be described by a low-dimensional 
dynamics if the number of modes whose eigenvalue cross the imaginary axis at the bi- 
furcation threshold (the order parameters) is small. Although these order parameters, 
which determine the macroscopic order of the system, still interact with the damped 
modes, the "slaving principle", (rigorously demonstrated for ODE's), states indeed that 
these decaying modes can be eliminated and explicitly expressed by the order parame- 
ters. In the class of systems leading to pattern formation, this may be compromised due 
to the spatial extension of the system (an infinite number of modes are squeezed in the 
immediate vicinity of the critical point). When one direction can be privileged (either 
because the system is not rotationaly invariant as it is the case for liquid crystals, or 
because one chooses to look at a particular direction only), it is possible to derive ampli- 
tude equations (such as the Ginzburg-Landau or the Newell-Whitehead-Segel equations 
[1]) which describe the behavior of the order parameters on a slow time scale. These 
equations contain slow spatial derivatives to account for the mode coupling in the band- 
width around each normal mode and thus are called envelope equations. They can be 
reduced to a generic form depending only on the type of bifurcation considered and 
the symmetries of the problem. Another approach can be adopted to treat the fully 
two-dimensional case [2], where equations for the order parameters are derived which 



contain the fully spatio-temporal dynamics on a fast varying scale (such as in the Swift- 
Hohenberg equation [3]). It will be observed in the conclusion that the approach we 
propose in this paper is close to this one but it applies even far from the bifurcation 
point. 

Usually an order parameter is a complex field ~4, corresponding to an amplitude 
A and a phase ~. It often happens that, due to some additional gauge invarianees 
of the amplitude equations (~4 --+ .ZIexp(i~)), corresponding to physical invariances of 
the system (translational invariance), the dynamics of A, close to a particular solution 
.d0, can be reduced to the evolution of the phase variable ~b only. This reduction is 
possible if the amplitude A remains slaved to phase gradients on the so-called phase 
branch, graph of the phase eigenvalue ~(q) in terms of the wavenumber q of the phase 
perturbation. Homogeneous phase perturbations of a given solution ~40 are marginal so 
that ~(0) = 0. The phase branch determines the linear terms of the phase equations; 
the nonlinear terms are determined through the elimination of the damped modes. It 
is however now well-known [4] that the phase description may break down when phase 
instabilities are present. For example the phase equation corresponding to the complex 
Ginzburg-Landau equation is the Kuramoto-Sivashinski equation which is known to 
develop a form of weak turbulence whereas the long term development of the phase 
instability in the complex Ginzburg-Landau equation always leads to the appearance of 
defects in the system, due to the coupling of phase and amplitude modes. 

When the stress parameter is well above its critical value leading to the onset of 
the spatial pattern under investigation, it is still possible (and in fact it is only possible) 
to derive a large-scale description of the dynamics in terms of phase variations. The 
undisturbed pattern is indeed translationally invariant, and thus the phase mode is 
still a marginal mode. The amplitude of the nonlinear waves building the pattern 
is however always slaved to phase gradients, except possibly near defects. An exact 
derivation of the phase equation for rolls with no privileged direction has been achieved 
recently in the ease of Rayleigh-B~nard convection by Cross and Newell [5] and Newell, 
Passot and Souli [6-7]. The technique was already known in other fields: for modulated 
nondissipative nonlinear train waves as developed by Whitham [8] or for modulated 
traveling waves in reaction-diffusion equations as exposed by Howard and Kopell [9] 
(see also Kuramoto [10]). In all these examples, use is made of the inverse aspect ratio e 
as an expansion parameter, and not of the stress parameter as previously. This relies on 
the observation that almost everywhere in the convective pattern, a local wavevector k 
can be defined which changes slowly throughout the container. Therefore, ignoring the 
dependence in the vertical direction, the field variables can be represented by locally 
periodic functions f(O; R(1) ) where f is 2~r periodic in 0 and R(1) represents the collection 
of stress parameters of the system. The field variable f varies over distances of the order 
of the roll size whereas the amplitude A (the norm of f e.g.) or the wavevector (the 
gradient of 0) vary over distances of the size of the box. This fact allows for the definition 
of a large-scale phase O(X, IT, T) = e0 where X = ex, Y = ey and T = e2t are the scales 
of the long wavelength disturbances. The phase 0 refers here to the total phase of the 
pattern whereas q~ defined above corresponds to the deviation about the phase of the 
basic pattern 00 = kox. Note also at this point that in contrast to the case of the Newell- 
Whitehead-Segel equations, direction Y is here scaled in the same way as direction X 



since we want to preserve rotational invariance. To leading order, and when no mean 
flow effects are present, the phase obeys a universal quasi-linear diffusion equation 

T(k)OT + V" kB(k) = 0 (1) 

where > 0 and B(k) are calculable functions of the waven ber k = N .  To this 
order of approximation, the amplitude A of the rolls is slaved to the wavenumber k 
through the relation 

d 2 = #2(k) (2) 
Equation (1) generalizes the fixed orientation equation of Pomeau and Manneville 

[11]. At finite Prandtl numbers a large scale horizontal mean flow, generated by the 
curvature of the rolls, advects the phase contours. Its presence is due to the existence 
of another marginal mode, namely a large-scale varying pressure field. The next section 
is devoted to a derivation of these coupled phase-mean drift equations and Section 3 is 
concerned with some predictions made on the behavior of convective patterns using the 
previous equations. In particular it is shown that all previous theories are contained in 
the present formalism and that moreover some new instabilities can be analyzed, such 
as the one of circular target patterns. 

The difficulty with equation (1) is that it is ill-posed for some values of the wavenum- 
ber, outside the nonlinear stability region. Section 4 is devoted to the definition of a 
regularizing scheme for that equation, illustrated on a microscopic pattern forming 
model, the Swift-Hohenberg equation. Section 5 exposes some numerical experiments 
on the regularized equation and Section 6 is the conclusion. 

II .  The  phase  d i f f u s i o n - m e a n  drift  equa t ions  

The starting point of the calculation is the determination of stable fully nonlinear 
straight parallel roll solutions of the following Oberbeck-Boussinesq equations: 

a ( & u + u .  Vu) = - V p + T ~ +  V2u 

O,T + uVT = Rw + V2T 

V . u = 0  

(3~) 
(3b) 

(3c) 

where the parameter R represents the Rayleigh number and cr is the inverse Prandtl 
number. The temperature is T, the pressure p and the velocity u has components 
(u, v, w). Rigid-rigid boundary conditions are considered which state that u = T = 0 at 
the top and bottom boundaries: z = 4-1. The existence of such a 2~r periodic solution 
v = f(0, z, k) (where v = (u, v, w, T,p) and 0 = kx) is assured by the previous work of 
Busse and Colleagues [12-19]; f is calculated, using a Galerkin technique as in [12]. 

Now we must look for modulated solutions and solve the linear equations obtained 
after inserting in (3a-3c) the following expansions in powers of the inverse aspect ratio 

Oqz ----~ Oz 

0x ~ kOo + ¢Vx 

GQ t ---4 e0T08 q- e20T 

v = vo + e v l  + e2v2 + - . .  
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Cross and along the roll velocities are also introduced: g = k .  u and 5 = (f~ x u ) .  
where f~ = k. We end up at order e and e 2, with linear systems of the form Mvj = 
gj (j = 1, 2), where M is the operator obtained by linearizing (3a-3c) about v = f. 

0I is element of its kernel. This operator is singular since due to translational invariance, 

We remark that 0/ is also a marginal mode corresponding to the fact that the pressure Op 
is at order 0 defined up to a large-scale varying constant p,. When solving for vl  (resp. 
v2), solvability conditions have thus to be applied to gl  (resp. g2), leading respectively 
to the phase and mean drift equations. The compatibility conditions state that the 
right-hand sides of the linear systems must be orthogonal to the kernel of the adjoint 

operator MY. Since M is not self-adjoint, we must solve for the homogeneous adjoint 
boundary value problem separately. One of its solution, corresponding to the pressure 

mode is trivial; it reads v~ = (0, 0, 0, 0, 1). The corresponding solvability condition is 
satisfied for j = 1 but becomes nontrivial for j = 2: it states that the "large-scale" 
divergence of the field < u l  > (<> denotes averaging over 0 and z) must be zero, but 
we know that < u ,  > will contain non divergence-free terms due to the contributions 
of the slow horizontal Reynolds stresses: aOXU2o + aOy(uovo) and cr0x (uovo) + aOyv~. 
It appears clearly now why me must include the slowly varying pressure p, at order 0, 
whose gradients contribute at order e in the resolution of the velocity field: the pressure 
p, is precisely determined by requiring that u l  be solenoidal and this equation is just 
another form of the mean drift equation that we usually prefer to write in terms of a 
stream function ~b after eliminating p, (< u > =  (1~ x V ¢ ) .  ~). We also see that at 
infinite Prandtl number no Reynolds stress is present to drive the mean flow. 

The system is closed but the difficulty is that we must solve for the fluctuating parts 
of vl ;  no approximation for the vertical structure of the mean flow will suffice in order 
to get a reasonable agreement with experiment, especially at low Prandtl numbers. We 
have to use an extremely robust inversion method to solve these singular equations and 
we use a technique based on a singular value decomposition of the matrix obtained after 
projecting the operator M on the appropriate basis. At this order of approximation, 
the equations read: 

Ft(A, k, R, a) = 0, (4a) 

-~-1  V .  kB(k)  = 0, (4b) o r  + p ( k ) v ,  v o  + ~(k) 

~ .  v x ~ ( k ) ( f ,  x r e ) .  ~ - v .  f ,# (k) (~ ,  r e )  

f, 
= ~ v  x ( a k V .  kA 2 - )tro'k~V" kB~(k))  - V .  l~(V x kB~(k) ) .  ~ (4c) 

where k = VO, V = V × ~b$, the quantities p(k), B(k), r(k), a(k), /3(k), Ba(k), 
r~(k), B~(k) are all functions of k which are explicitly calculated. The first equation, 
otained by fixing the periodicity of the basic roll solution, gives the amplitude A as a 
function of the wavenumber k, given the Rayeigh and Prandtl numbers. The vertical 
structure of the mean drift velocity is different for the "along the roll" or the "across 
the roll" components and this is why the left-hand side of equation (4c) is not simply 
a Laplacian. The first term of the right-hand side comes from the horizontal Reynolds 
stress whereas the second and third terms essentially come from the vertical Reynolds 



stress. The appropriate boundary conditions are that ¢ is a streamline and that the roll 
axis is perpendicular to the boundary: l~. fi = 0. For the special case of circular target 
patterns however, the correct boundary condition is rather: ~: x fi = 0. These equations 
are translationaly and rotationaly invariant and also Galilean invariant, even though the 
original system is not. In the next section we will show that the preceding equations 
can predict the nonlinear stability region of straight parallel rolls (usually called the 
Busse balloon) and that moreover they can also predict the stability of circular target 
patterns. 

I I I .  S o m e  resu l t s  

Linearizing equations (43-4c) about straight parallel rolls (00 = k0X, ¢0 = 0), it 
is easy to find the loci (in the (R,k) plane, for a given ~r) of the Eckhaus (for a purely X 
dependent perturbation), zig-zag (for a purely Y dependent perturbation) or skewed- 
varicose border, limits of the nonlinear stability domain. The skewed-varicose instability 
occurs when the maximum of the growth rate corresponds to a perturbation containing 
both X and Y dependences. It is the modification of the Eckhaus instability in presence 
of mean drift and generally leads to formation of pairs of dislocations. Figure I displays 
some of these results where we can check that our theory reproduces the long-wavelength 
instabilities of the Busse balloon to within a very good accuracy. 

However, in natural patterns, the influence of sidewall boundaries is such that the 
rolls tend to form circular patches. It is then natural to investigate the stability of ex- 
actly circular target patterns. Moreover there is a possibility to check our calculations 
and conjectures with laboratory experiments performed by Steinberg, Ahlers and Can- 
nell [21]. These authors reproduce this model, using a lateral forcing on the sidewalls 
to initiate the circular pattern. For an exactly circular pattern (4b) becomes: 

 kB)=O (5) 
T F  

where r is the radius in polar coordinate. It is easy to see that equation (5) leads to 
stationary solutions with k = ku such that B(kB) = 0, the focus acting as a source 
of new rolls if k < kB and as a sink if k > kB. Therefore the curvature is acting as a 
wavenumber selection mechanism, first observed by Pomean and Manneville [22], even 
in natural patterns where fractions of foci singularities are present (especially in the 
corners of the containers). Using a functional which is shown to decrease almost every 
time (except perhaps when dislocations play a significant role) it can be argued [23] 
that on the time scale e -2, the horizontal diffusion time, patches form which satisfy the 
boundary condition k .  n = 0 along portions of the boundary, and in which k --~ kB 
almost everywhere. On figure la  (resp. lb), we displayed the locus of ku and the selected 
wavenumber for different Rayleigh numbers as found in experiments done respectively 
by Steinberg Ahlers and Cannell [21] and Heutmaker and Gollub [24]. We find a good 
agreement between the observed dominant wavenumber and kB. 

When non-axisymmetric perturbations are superimposed on the circular target 
Oo = kur, a non-zero mean-drift field will be generated which tends to increase the 
deformation and opposes to the action of the diffusive terms. Above a certain value of 
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Figure  1 The long-wave borders of the Busse balloon marked E (Ecldlaus), Z (zig-zag) 
and SV (skewed varicose), and the zeros kB of B(k) for two different Prandtl numbers: 
(a) 6.1 and (b) 2.5. In (a) the wavenumber of the 3½ and 3 roll equilibrium states is 
displayed (circle and squares respectively) as the Rayleigh number is increased (taken 
from Steinberg Ahlers and Cannel [21]). In (b) the maxima (x) and the support of the 
wavenumber distribution are superimposed (taken from Heutmaker and Gollub [24]). 



the Rayleigh number (for a given Prandtl number), the circular patch will be linearly 
unstable. Nonlinear saturation is experimentally observed to occur which leads to an off- 
centered target as displayed in figure 2. This "focus instability" is important in-initiating 
time dependence (even in natural patterns), as observed when the selected wavenumber 
lies well inside the Busse balloon. At the point where ks crosses the skewed-varicose 
boundary we rather suggest that dislocations would be nucleated all over the container 
and that the spatial coherence will be lost. The values of the critical Rayleigh number 
at which the focus instability appears, as calculated by our theory, is consistent with 
experiments [21], but corrections to account for the finiteness of the box are certainly 
necessary. Moreover it appears that in the center of the patch the amplitude of the rolls 
is no longer slaved [7] and this is important to calculate a precise value of the instability 
threshold. The study of this latter point requires the determination of coupled PDE's 
governing the behavior of both the phase and amplitude variables. This point is now 
addressed in the following Section. 

(a) (b) 

Figure  2 Equilibrium patterns taken from Steinberg, Ahlers and Cannel [21] at P = 6.1, 
aspect ratio 6 and for two different RayMgh numbers: (a) a stable state three roll state 
at R = 3Re and (b) its distortion at R = 4Rc. 
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IV. Regularization of the phase equation 

We shall now start with general considerations and show the limitation of the 
preceding approach, trying to bring up some new features in order to cure the problems. 
Let us introduce, for the sake of general discussions, a typical pattern forming equation 
of the form: 

F " 0  ' + R, = 0, (6) 

invariant under space and time translations and parity symmetry. As an example we 
will use the real and complex Swift-Hohenberg equations because they are simpler, 
but all the ideas will go through for the full Oberbeck-Boussinesq equations even with 
mean drift effects present. We assume that (6) admits stable steady periodic solutions 
w0(0; R, k) invariant under parity symmetry 0 ~ 0. The period in 0 is 2Tr. This defines 
the wavenumber k, or equivalently an amplitude A, so that w0 can also be considered 
as a function of A. Since the pattern breaks the space translational symmetry it can 
undergo phase perturbations. We will assume that in the parameter ranges chosen, no 
other symmetries are broken, (i.e. there are no secondary bifurcations) and then the 
phase mode is the only marginal mode, except, as we shall discuss, at the marginal 
stability boundary. 

The phase diffusion equation (1) can also be obtained for (6); it was previously 
derived as a solvability condition of the equation which governs the correction w ~ to the 
almost periodic field w0. This solvability condition is made necessary by the existence 
of a periodic null solution vl = ~ 0  of the operator obtained by linearizing the original 
microscopic equations about the field w0. The null solution vl exists because of the 

Owo 0 OWo Ok 2 translational invariance. There is also a second null solution, v2 = -gX + 2k--~ 00- OA, 
dwo Owo Owo O0 Ok 2 and oo 0 (i.e. v2 = dA -- OA + O 0 0 T  0--~ Ok2 -- 2 g ) '  but, because of the presence of 

the second term, v2 is not periodic and thus in general does not lead to an additional 
solvability condition. It is however periodic at the boundaries of the marginal stability 
curve given by A 2 = pC(R,  k) = 0 so that for values of k at which #2 is zero, there 
is indeed a second solvability condition which turns out to involve a correction to the 
amplitude equation (2). We shall see shortly why this correction is necessary. 

The difficulty with (1) is that it is ill-posed in the sense that 

O~ d B  Ox Oy d B  _ O~ d B  
V .  kB = (B +   )Oxx + + (B + 

(k = V0 = (0x, 0y)), is only negative definite and therefore (1) is only stable when both 
B ( k )  and d k B  are negative. This occurs for a band of wavenumbers k z ( R )  < k < 

k E ( R )  ( B ( k z )  = O, d k B I k = k E  = 0) which is the nonlinear stability domain or "Busse 
balloon". As soon as the wavenumber k wanders outside the Busse balloon, there 
is a rapid growth of the short scales and unphysical instabilities. We must therefore 
regularize the phase diffusion equation. 

The nature of the instabilities when k < k z  or k > ks are different [25]: At the zig- 
zag border the instability is a supercritical-type bifurcation and it saturates when the 
rolls develop a z igzag pattern. The regularization of (1) can thus simply be achieved 
by going to the next orders of the expansion, which consists in adding to the phase 
diffusion equation terms proportional to e2V2V • k. There are other nonlinear terms 



but this one is the most important, capable of achieving a balance with ~TkB after 
introducing the scaling Y = ~½ y in the "along the roll direction". On the other hand, 
at the Eckhaus border, the instability leads to a readjustment of the roll wavelength 
(or for the skewed-varicose instability when mean flow effects are present, it leads to 
formation of dislocations), during which process the amplitude approaches zero locally 
and the wavenumber wanders way outside the right border of the marginal curve. It 
appears clearly now that even though the preceding type of regularization is sufficient 
at the beginning of the instability process, it is not at all sufficient to describe the whole 
story. 

It will be necessary to supplement the phase diffusion equation by a Newell- 
Whitehead-type equation when k approaches kr, the right border of the marginal 
stability curve. This is possible precisely because at kr the second solvability condi- 
tion leads to a correction to the amplitude equation. However when this equation is 
derived not at the minimum of the marginal stability curve but at some point (k0, R0) 
for R0 > Rc, the critical Rayleigh number, additional terms are present compared to 
the Newell-Whitehead equation which lead to an unbounded transfer of energy to any 
k < k0 and one must write an equation for W = Aexp(i@, where ~9 is the total phase, 
to remedy this problem. 

In order to match properly the "generalized Ginzburg-Landau equation" derived 
at kr and the phase diffusion equation with the bilaplacian term, valid close to kE, 
one must find coupled PDE's for the phase and an amplitude mode valid in the range 
kE < k < kr. This system does not need to contain exact higher order terms because the 
process which leads/~ to approach and exceed kr is very rapid. The solution appears to 
be attracted to a robust singular solution of the reverse nonlinear heat equation in which 
the high k modes are slaved to the low k ones. This is analogous to the regularization 
of strictly hyperbolic equations: Nolle of the large scale dynamics (shock strength and 
speed) are affected by the choice of the artificial viscosity. However it is not clear how 
to derive an equation for the amplitude A in this range of wavenumbers using the usual 
asymptotic expansions discussed in the preceding Section because there is no second 
solvability condition. 

Before introducing another approach, let us mention a possible extension of this 
formalism in some simple cases, showing the existence of a coupling to an amplitude 
mode even though this one is not marginal. For more details on that procedure see 
[26] and [27]. The solution of the linear equation for the corrections wi to the basic 
field w0 can be computed (at least in principle), using the method of variations of 
parameters starting from the n solutions of the homogeneous linear problem (n is the 
degree of the system). Of these n solutions, only the one which corresponds to the 
space translation symmetry ~ 0  ° is periodic of period 2~r. The companion solution, 
dk2d Wo = kOkwo + O00wo will only be periodic when the amplitudes of w0 is very small. 
The general solution for wl will have n arbitrary constants, one of which is determined 
by the solvability condition and is just the phase diffusion equation or its correction, 
and the rest are determined by insisting wi is 2~r periodic. In the cases where any of 
the remaining (n - 1) solutions is almost periodic, the corresponding constant'becomes 
unbounded. For example, for the case of the complex Swift-Hohenberg equation: 

Otw + (1 + A ) 2 w -  Rw + w2w * = 0, (7) 
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the linearized operator is Lv = Otv + ((1 + k20~) 2 - R +  2#2)v + w~v*, wo = Aexp(iO), 
the solvability condition demands that  the imaginary part of the coefficient of exp(i0) 

e io 
on the R.H.S. is zero and v = X~N(R.H.S.) which becomes unbounded as A ~ 0 (see 
[5]). In this case the asymptotic expansion becomes nonuniform and must be modified. 
In fact, this is an indicator that  a new order parameter must be introduced, in this 
case, an active amplitude. However, other possibilities for unbounded constants exist. 
If for example, in the real Swift-Hohenberg situation, the third harmonic 3k of the 
fundamental  mode with wavenumber k lies sufficiently inside the marginal curve so 
that  it becomes competitive with the original periodic solution, then a new phase 02 
with local period ~g~ must be introduced, together with its companion amplitude. This 
would first occur (and we checked it does) at a value of the Rayleigh number R for 
which k given by (k 2 - 1) 2 = R lies in the left marginal stability boundary and 3k given 
by (9k 2 - 1) 2 = R lies on the right marginal stability boundary (i.e. R = 0.64 and 
k = 1 /v~) .  In such circumstances, we would be forced to introduce a more general 
quasiperiodic solution w(O1,02;kl, k2) and seek two phase diffusion equations. In this 
paper, we are going to avoid the latter situation which we might call mode resonance 
and concentrate on the former where the amplitude of the chosen mode becomes an 
active order parameter.  

How do we modify the amplitude equation which to this point is algebraic, which 
means the amplitude is slaved? In the ease of the complex Swift-Hohenberg equation, 
the solution is obvious because we have the exact functional form of w0 = A exp(i0) 
which when substi tuted in (7) gives exactly: 

AOT + £,IA + e2/:3 A = 0 (8a) 
~2 

/~ - A 2 - (1 - k2) 2 = ~(AT  + £1A + e2£4A). (8b) 

where 

Co = + k 

J~l = (1 + k2a~)D1 + D1(1 + k2a 2) 
2 2 £2 = (1 + k2O~)D2 + D2(1 + k2a~) + DlOO 

£3 = DID2 + D2D~ 
£~ = D~ 

and 

D I = 2 k ' V + V - k  

D2 = V 2. 

~2 
/2~ means tha t  we replace ~ in £;j by _p2. 

A simple "trick" can also be worked out in simple instances, as for example for 
obtaining the nonlinear SchrSdinger equation for slowly varying wave trains starting 
from Whi tham's  theory [26]. It consists in adding a free parameter to the right-hmad 
side of the equations and use this extra degree of freedom to impose another constraint 
on the constants of integration such as to remove from the solution this term, which 
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diverges when the amplitude is small. In the case of a conservative nonlinear wave 
equation the extra free parameter is obtained by adding explicit higher order corrections 
to the dispersion relation. It can also be obtained, for dissipative systems, by expanding 
the stress parameter and the form that the extra condition will take is also a correction 
of the dispersion or eikonal relation. 

In general however we will not have the luxury of such exact solutions and we 
will now discuss an alternative approach to obtaining (Sa) and (8b) as asymptotic 
expansions directly from the equation (6). The first step is to use the scale separation 
(expressed as 0x --+ k00 + eVx) to expand F as EeiFi. We could express w as a 

En=+~c~ e in° where the Fourier coefficients c~n are slowly Fourier series in 0: w = n = - ~  n 
varying functions of space and time. This representation would however give rise to an 
infinite number of coupled equations for the coefficients and it is not easy to see how 
to close the system. The more natural choice of basis is the set of eigenfunctions of 
the operator obtained by linearizing F about the periodic solution w0. Let us consider 
w0 of parity S (symmetric) to be the solution of Fo(wo) = O and denote by L the 
linear operator obtained by linearizing Fo(w) about w0: L = ~ A complete 6w w0. 
stability analysis about the periodic solution w0 should lead to the full basis of the 
Bloch functions and their associated Floquet exponents. Since here we are interested 
only in large scale instabilities, we will only consider those Bloch eigenmodes which have 
the same periodicity as the basic nonlinear solution. This means in particular, we work 
in parameter ranges so as to exclude the secondary instabilities spoken about in the 
last paragraph and which, for the real Swift-Hohenberg equation, involve modes which 
are superharmonic of the basic pattern. We are thus led to consider a discrete set of' 

eigenmodes ~i (and ~ for the adjoint operator Lt) corresponding to the eigenvalue Ai, 
where Ai+I _> hi. We have ~0 = 0 and ~0 o~ Oowo. Let us normalize the eigenmodes by 

imposing < ~]~j > =  5ij and < ~il~i >= 1. Due to the assumption about the parity 
of the basic solution the eigenmodes are either antisymmetric (~iA) corresponding the 
phase translation or the introduction of new phases, or symmetric (~is) corresponding 
to the companion amplitudes. The marginal mode 50 is of parity A, the least damped 
mode in a neighborhood of kr is of parity S and it corresponds to the amplitude mode. 
For the wavenumbers considered, all the eigenvalues hi, i _> 1 are positive. 

Let us write the perturbation w' as ws + Wp where ws is the dominant symmet- 
ric correction that we can write as~ls and where wp represents the passive or slaved 
modes. Substituting this expression into (6), we then project the equation onto the 

adjoint modes ~j, (~s" The first equation obtained is the usuai phase diffusion equation 
containing the dominant correction terms and the second one is a correction to the 
eikonal equation. We get 

< 5jlOo(wo + w~) > OT+ < 5jlFl(w0 + ws) > +e 2 < 5~]F3(w0 + w.) >- -0  (9a) 

Away from the borders of the neutral curve, AlS is not small and (9b) can be solved 

#~ 5Fo. algebraically for " s  (expand < 5~slFo(wo + w~) > as < 5~slFo(wo) > + < ' ~ lS  

w~ > =  0 + Alsas).  In this case we are left with a single equation for the phase 8. 
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In the low amplitude limit, w0 can be approximated by P{1S and then w0 + w, is 

(# + a l s ) { l s  = A{IS. Then < {~siFo(wo + ws) > = <  {~slFo(A{~s) > which can be 
calculated directly. However this latter term takes on a generic form at low amplitude 
and for a supercritical-type bifurcation, independently of the nonlinearity involved in 
F0. It reads: g(k)A(A 2 - #2), where g(k), which corresponds to the damping rate of an 
amplitude perturbation to the roll solution, is simply ~,s In the low amplitude limit, 2 # 2  • 

one finally obtains that (9a), (9b) are 

< ¢![¢1s > AOT+ < ¢!]FI(A¢]s) > +e 2 < CJ]Fa(A¢ls) > = 0 ,  (10a) 

e2OTd + g(k)d(d  2 _ #2) + e2 < ~!s]F2(A~ls) > =  0. (10b) 

The structure of F1 suggests strongly that after multiplying ( l la )  by A and approxi- 
mating the O(e 2) term in (10a) by its more relevant term, we shall obtain the following 
equations: 

~ I - V .  (kA2/)(k)) + e2r/V40 = 0 ( l l a )  OT + ~:(k)A 2 

~2AT + g(k)A(A 2 - #2(k)) - e2~(V2A, (kV)2A, -. .) = 0 (11b) 

which are the usual phase and algebraic amplitude equations when O(e 2) terms are 
neglected. This in turn defines ~ and 1) by the relations: #2~(k) = 7(k) and #2B(k) = 
B(k). 

For the real Swift-Hohenberg equation at small amplitudes, where we can ap- 
proximate w by a one Galerkin mode expansion for the basic roll solution (i.e. w = 
v~A cos(e)), we have ~2(~) = ~ ( R - ( 1 - k 2 ) 2 ) ,  ~(k) = 1, B(k) 2 ( 1 - k  =) and g(k) - 3 

The function ( entering at the O(e 2) level in (11b) is in general complicated. How- 
ever we shall not need to know its particular form since it contains terms which are 
irrelevant as long as A is not small, in which case it would mean that the wavenumber 
is close to the marginal stability border where a separate analysis is performed as shown 
below. The coefficient of the bilaplacian term in ( l la )  is calculated by looking at the 
most unstable wavelength of the zig-zag instability and in this case only the "along 
the roll" term (or ® y y y y  if the basic pattern is O0 = koX) is relevant. In the other 
case where the basic pattern undergoes an Eckhaus instability, the same parameter r/ 
multiplies also the "across the roll" (or O x x x x )  term and now serves exactly as an 
artificial viscosity whose exact value will not influence the final resulting pattern. 

We now carry out an analysis close to the marginal stability border and try to 
extend the region of validity of equation (11a-b) for values of the wavenumber greater 
than the marginal value k~. This will in particular allow for a description of defects. 

One might first try to match (11a), (11b) with the Newell-Whitehead-Segel equa- 
tion derived for wavenumber k~ and values of the Rayleigh R well away from Re. Con- 
sidering eq. (6), we will denote by ),(R, k) the eigenvalue of the operator L0 = ~F Iw=0 
for a mode whose wavenumber is slightly inside the marginal stability curve (~(R, k) 
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and - h i s ( k )  are equivalent in the limit k goes to k~). It is easy to see that the complex: 
amplitude equation for the marginal mode takes the form: 

Oh Oh 6. 02h IO~jVI A 
= - Io(n - Ro)A O(i j)10VIA - 20(ik )O(i ,) 

- golAIzA + O(elAl4A) + O(e2), (12), 

where 0r stands for OT1 + eOT~, Tj = eJt. The index 0 means that the expression has 
to be evaluated at kr (possibly by taking a limit). One has of course/~(R, kr) = 0 and[ 
go identifies here with the Landau constant which is also equal to g(kr), the limit as k 
goes to k~ of a(R,k) The term containing first order derivatives in A is at the origin 

of an amplitude instability of the A = constant solution, leading to a decrease of the 
wavenumber towards values closer to the band center. It is thus natural to look for an 
equation governing the evolution of W = Aeik~*; it is clear that its linear part reads in 
Fourier space: 

0 , ¢ / +  h(R, k)V¢ = 0 
where k = k~ + V¢. We will now look for an approximation to this equation by 
expanding A(R, k) near kr as a quadratic spline polynomial in k 2 (h is indeed a function 
of k 2 due to rotational invariance.) Setting: 

h(R, k ~) = so -/~ok 2 + 70k 4, (13) 

the equation for W can now be written: 

e~O~W + (s0 + ~ 0 V  ~ + ~%0V4)W + g01Wl~W = 0. (1411 

If it happens that the coefficient 70 is negative, a higher order polynomial should be used 
to fit the function h(R, k) in such a way that the highest order Laplacian of equation (14 I} 
is a damping term. The above approximation is made necessary especially in situations 
where the growth rate contains a denominator which is also a function of k 2. This 
happens for example when the time derivative term of w in (6) contains also spatial 
derivatives (c.f. model I in [5]). We can derive the first-order linear phase equation 
for (14) in order to relate its coefficients to the one of the phase equation (1) linearized 
about (9 -- krX. Identification of the coefficients leads to: 

h' = ---BI0 (15) 
T 

h " -  (16) 
27" pZ 

where the prime denotes differentiaiton with respect to k 2. The equation (14) is only 
valid around kr and in order to match with the phase diffusion--amplitude equations 
valid inside the marginal stability curve, it will be convenient to have the coefficients 
c~0, /30, and 3'0 become functions of k and calculated from T(k), B(k) and g(k) by 
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demanding that to leading order the phase diffusion (1) and amplitude equations (2) 
(parts of ( l l a )  and ( l lb ) )  should be recovered from (20). We find 

#2 d B 
7 ( k ) -  2 T d k 2 ( ~ )  (17) 

/~(k) = B + 2/~2 7 (18) 
T 

a(k) = k2fl - k47 - g#2. (19) 

It is easy to find, using (15) and (16), that the functions a(k), /~(k) and 7(k) have 
indeed the right limits ao,/30 and 7o as k approaches kr. 

The equation 

~ 2 0 T W  + (~(k) + ~2~(kDV2 + ~%(k)V4)W + g ( k ) i W l 2 W  = 0 (2O) 

is therefore the canonical and universal equation for describing the behavior of the 
complex order parameter W = Aei{ constructed from the amplitude and phase (and 
not to be confused with the exact solution except in the special case of the complex 
Swift-Hohenberg equation itself) near the right-hand border of the marginal stability 
curve. For the complex Swift-Hohenberg equation where g(k) = 1, ~- = A 2, B =- 
A 2 dA2 -- --2(k 2 -- 1)(R - (k 2 - 1) 2) and #2 = R - (k 2 - 1) 2, we have 7 = 1, ~ = 2 and 

d k  2 - -  

a = 1 - R so that (20) is indeed the complex Swift-Hohenberg equation. 
In the regime well inside the marginal stability curve where the amplitude is cer- 

tainly slaved and where a one-Galerkin mode approximation for w0 ceases to be a good 
approximation, it is appropriate to write (11a) and ( l lb )  as 

W 
( ~ V .  klWl2/~(k) + ~V2V • kiWI 2) = O. (21) w ,  - g ( k ) W ( ~  2 - IWl 2) + ,]~/~ _( ) 

so that it will be easier to match with eq. (20). The time and spatial derivatives are 
performed with respect to the small scales (x, t). The bilaplacian term has been slightly 
altered since it is more convenient to introduce the combination kiWI 2 which is well 
defined throughout the whole field (even at defects). This formulation is valid as long 
as the modulus of the damping rate of the "least damped" mode is large enough so that 
#2 _ ]WI2 stays always negligible. If this condition is not met, the pattern is close to 
a secondary bifurcation or a small-scale instability and in both cases it is certainly not 
possible to describe the dynamics by the present formalism. We exclude this possibility. 

The matching between (20) and (21) is now easy to perform by introducing a 
function 5(k) which is zero near kMr and smoothly goes to unity when k approaches 
the center of the band. The form of this function does not have any influence on the 
precision of the formulation. We obtain: 

w, + (~(/~) + ~(k)v 2 + 7(k)v4)w + g(k)lwl2w 
• w 1 v .  klW122}(/~) + ~ V 2 V .  kiWI 2) = o. (22) 

It must be noted here that the coefficients a,/3 and 7 are different from those given in 
(17)-(18)-(19) and in particular now depend on the function 5. 
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This equation contains exact regularizing terms only at the border kr; for values of 
k between ks and kr these terms are taken simpler for convenience. We conjecture and 
verify numerically in the next Section that it does not affect the overall dynamics. All 
evidence suggests that there is no growth of spurious instabilities and it would appear 
that all high k modes which are generated are simply slaved. When defects form, the 
dynamics accelerate and the shape of the wavenumber around the center of the defect 
seems to be very robust with respect to modification of the higher order terms. It 
would appear that the solution is attracted to a "singular" solution of the nonlinear 
heat equation. This point will be illustrated in the next Section where some numerical 
experiments are made using eq. (22). 

V. Numerical  s imulations of the regularized phase diffusion equation 

We choose to illustrate the capabilities of eq. (22) by displaying the basic behavior 
of solutions initiated with simple patterns whose wavenumber is close to the Eckhaus 
and the zig-zag border. The coefficients of (22) are calculated taking the real Swift- 
Hohenberg as a microscopic model. For more details the reader can refer to [28]. 

We will consider initial conditions for which the wavenumber is initially not too far 
from to the borders of the nonlinear stability domain which for R = 2 is delimited by 
k = 1. at the zig-zag border and k = 1.37 at the Eckhaus border. When we are not too 
far from the zig-zag boundary, the zig-zag instability is saturated by the regularization 
of the phase-diffusion equation and the coefficients c~,/3, 7 play no role. Notice for k in 
this region, * = 1 and we are in effect solving (lla-b). On the other hand when we start 
outside the Eckhaus boundary, defects are nucleated and near defects, wavenumbers 
near both kr and kl are present. In this case we need to use the full equation (22). 

The regularized equation is amazingly robust. It gives results in dose agreement 
with the original Swift-Hohenberg model even for the choices of stress parameter and 
initial conditions for which secondary instabilities are potentially present and for which 
the saturation of the zig-zag instability occurs at significantly finite amplitudes. 

The integration of (22) is done With a standard pseudo-spectral method using a 
temporal scheme which mixes an Adams-Bashforth for the nonlinear terms and an exact 
integration of the linear terms. Each coefficient a, /3, and 7 is split into its constant 
limiting value and a remainder. We use periodic boundary condition on a spatial grid 
containing 32 collocation points and the time step is 0.1. Due to this spatial resolution 
we are limited to a rather large value of e and of ~1. We chose c = .25. We take for all 
runs ~1 = 1. We verified that a change of these values do not affect the dynamics except 
for determining the wavelength at which the zig-zag instability saturates. 

We display here two calculations. The first one concerns the evolution of an Eckhaus 
unstable pattern at k = 1.45 with a slight modulation transverse to the rolls tending: 
to squeeze them in the middle of the container and a perturbation superimposed in the 
"along the roll" direction which leads to the formation of two pairs of defects, one in 
the middle of the box and the other one on the edge. Figures 3a and 3c display the 
contours of the real and imaginary part of the field W and show the pinching of the 
roll and the defects. A cut of the wavenumber is shown in figure 3b. The defects move 
(they climb) and an equilibrium is obtained where quasi-circular patches are formed on 
the edges (Fig. 3d). This state seems to be stationary at least for as long as we 
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Figure  3 Contour lines of ~(w) = 0 (value +1) and ~(w) = 0 (value -1) .  This 
sequence corresponds to the temporal evolution of an Eckhaus unstable pattern with 
w(t  = O) = A e x p ( i k o ( x  + as inx  cosy)). We have ~/= 1., k0 = 1.45 and a = 0.01. 
(a) Pinching of the rolls; 
(b) cut of the wavenumber at the middle of the box at the same time; 
(c) two pairs of defects; 
(d) final state; 



integrated ( t  = 80). The symmetry of the pattern has not been broken in this case. In 
another experiment with k = 1.4 (not shown) the symmetry finally breaks and after 
gliding the defects annihilate each other. The final state is then a straight parallel roll 
pattern containing one less roll. 

In a second experiment we investigated the nonlinear evolution of a zig-zag in- 
stability. Starting with a pattern at k = 0.7 with a small perturbation along the roll 
we end up with a saturated state as shown in figure 4 where the wavenumber of the 
pattern stabilizes around 1. The number of wavelengths in the direction of the pertur- 
bation depends on the value of Q. It is interesting to note that the perturbation is not 
periodic in the direction along the roll. This is also observed when integrating the real 
Swift-Hohenberg equation. For this value of k as an initial condition, the value of the 
destabilizing diffusion coefficient is quite large. It is interesting to note that we get a 
good agreement for the final state with the original equation. We must remark however 
that the early development of the zig-zag instability is different in the two cases. For 
the basic equation, the instability begins at small scale, concentrated in a certain region 
of the pattern. The equation (22) leads however to a large scale development uniformly 
throughout the direction of the perturbation. 

Figure 4 Final state of a pattern initially zig-zag unstable with ko = 0.7, r )  = I . ,  
w(t = 0) = Aexp(iko(x + a siny)) and a = 0.01. This state is almost stationnary and 
k N 1.06. 
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VI. Conclus ion  

As a first concluding remark we would like to mention that the equation (22) we de- 
rived in Section 4, or its extension taking into account the mean drift term (in progress), 
is certainly quite general and bridges the gap which existed between qualitative and 
quantitative models. The first ones, such as the Swift-hohenberg [3] (or its general- 
izations [29],[30]), give a good overall picture of convective patterns but do not allow 
for exact comparisons with experiments, and cannot extend to large Rayleigh numbers. 
The second ones were up to now restricted to the case of simple patterns, close to onset 
(e.g. the Newell-Whitehead-Segel equation), or to the case of "defect-free" patterns 
(the phase diffusion equation as presented in [5] and [7]). 

The equation we present here must include a small scale behavior of the order 
parameters A and O since it can reproduce the formation and dynamics of defects. But 
it does not need to capture all the small-scale features of the underlying pattern, such 
as boundary layers. In this sence it is much easier to handle than the microscopic model! 

Proper boundary conditions should also be derived for (22) since it contains fourth 
order derivatives. This work is currently in progress. 
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Abstract* 

Hamiltonian systems with many degrees of freedom, like large assemblies of interacting 

particles in a box are described by the Gibbs-Boltzmann statistics, as far as their average properties are 

concerned. This does not hold for the long time behavior of classical nonlinear field equations, as 

noticed already by Jeans, because of the infinite heat capacity of this field. Thus nonlinear (and 

nonintegrable) classical fields cannot relax for long times toward an ill defined thermal equilibrium. 

Here I consider an example of this relaxation problem, that is the long time evolution of solutions of the 

nonlinear Schrtktinger equation, in the defocussing case. I show, under some assumptions that for long 

times there is a cascade toward smaller and smaller scales, introducing a kind of dissipation in a system 

that is formally reversible, and I give the scaling laws for this. 

A famous piece of history in physics is the discovery of quantum mechanics through the 

realization that the Gibbs-Boltzmann statistics does not hold for the blackbody radiation. A classical 

field, as the electromagnetic field in a cavity has infinetely many degress of freedom, and by the 
kBT Ehrenfest principle each of these degrees should get the energy T (kB=Boltzmann constant, 

T=absolute temperature), showing that the heat capacity of such a system is infinite. In the present note 

I shall not consider such grand questions, but merely the following point: given a nonlinear classical 

field equation (equation 1 below), what is the asymptotic behavior of a smooth solution of it ? This is 

connected with the blackbody problem because, for a classical field, one cannot give a meaning to the 
H 

Gibbs-Boltzmann weight exp( - k--~), where H is the energy. Again because of the infinite heat 

capacity one cannot relate the temperature to the energy of the system, as a Lagrange multiplier. Similar 

difficulties would appear when trying to define a microcanonical ensemble: then the heat capacity of the 

* This summarizes part of a talk presented at the workshop on "Large-scale structures in nonlinear 
physics"held at ViUcfranchc-sur-Mcr, France, January 14-18, 1991. 
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infinitely many degrees of freedom forbids one to share a finite energy equally among those infinitely 

many degrees of freedom. 

This kind of question has received recently a good deal of attention in the particular case of the 

long time dynamics of solutions of the Euler equations for inviscid fluids in 2dimension of space (2D) 

[1-4]. There, by introducing the Young measures [5], one can treat consistently the infinite number of 

degrees of freedom related to the small scale fluctuations, and then explain, for instance, why do those 

flows form large coherent structures together with messy small scale fluctuations. Those results are 

remarkable in the sense that they introduce both a kind of equilibrium in a non obvious sense and a kind 

of irreversible behaviour, for equations that are formally reversible. 

I already pointed out that this kind of question has more than a theoretical interest, as it leads to a 

better understanding of some of the observed features in real fluid turbulence. Below, I examine another 

problem, that is the long time evolution of the nonlinear Schr6dinger equation, in the defocussing case. 

This equation is a possible dynamical equivalent of the Landau-Ginzburg equation for superfluids and 

superconductors. However, the matter is rather complicated [6] and so I do not claim to have here 

something that applies directly to any kind of real superfluid or superconducting material. Instead it 

should help to understand that irreversibility may be more subtle than the mere formal introduction of 

damping terms in the equations of motion, a concept that could have some relevance outside of pure 

theory. 

After convenient dimensionalization to get rid of irrelevant coefficients, the equation I am going 

to consider can be written: 

i -,~--- = AW + ~ -  IWI2~ (1). 

This is the socalled nonlinear Schr&linger equation (NLS), where A is the ordinary Laplacian, 

and ~ a complex valued smooth function of the vector x representing the position in space and of the 

time t. I shall not consider any specific geometry, but assume, for instance that either (1) is posed with 

periodic boundary conditions or that • satisfies the Dirichlet conditions on some boundaries. 

This equation has been shown to have [7] a smooth behaviour for smooth initial data in a rather 

wide range of conditions. In space dimensions 2 and higher, the focussing case [that is the same 

equation as (1), but with a plus-instead of minus-sign for the cubic term], this is known to lead to 

singularities after a finite time and for smooth initial data [8]. In dimension 1, the focussing case is 

integrable [9]. I shall consider now the question of the asymptotic behaviour of solutions of (1). The 

dynamical system defined by equation (1) is Hamiltonian, because it can be written as: 
• b Y  ~iH 
1 ~ = - ~ W *  ( 2 ) ,  

where the energy H{~P} is the functional: 

H{~F} = f  dx (IVY[ 2 -  IWI 2 + llWI4 ) 

and 
8 

fig* 

(3), 

is a Fr6chet derivative, ~P* being the complex conjugate of ~ .  
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Indeed the system has the usual Noether invariants (constants of the motion in the course of 

time): the momenta (if the boundary conditions allow it) and the energy H, plus the one related to 

invariance of H{.} under a global phase change of W, this is the "number of particles": 

N{W} =~ dx IWI 2 (4). 

Now I shall develop the following idea: given N, there exists a solution W0 eilxt of (1) that 

minimizes the energy H{W}. In a loose sense, one would expect that, given N again, the system will 

tend to relax to this state of lowest energy. It cannot do that formally in NLS, because of the energy 

conservation. However, the very existence of infinitely many degrees of freedom will make the system 

to diffuse in phase space toward these degrees of freedom. In other words fluctuations at smaller and 

smaller scales will appear, resulting from the nonlinear interaction between fluctuations of larger 

wavelength. Small scale fluctuations contribute to the energy mostly through the "kinetic energy" term 

IVgJI 2 in the integrand of H{.}, and thus can yield a contribution to H{.} that is finite although the 

corresponding contribution to N, not involving the space derivative becomes negligible. In other terms, 

the amplitude of the small scale fluctuations becomes negligible as time goes on, but not their gradient. 

We shall make this more definite and give estimates of the asymptotic behavior of the various quantities 

involved. 

Given N, the minimum of H {.} is reached for the function u/0 that is the solution of: 

IxW0 + h~0 + ~0- 1~ol2Wo ---0 (5), 

where tx is a Lagrange mutiplier allowing to specify N. Equation (5) can be solved in 1D, with 

Dirichlet b.c. at x=0 and L. This makes appear elliptic functions. Two interesting limits can be 

investigated: N small and N large. 

At small N, one expects W0 small, and thus one may neglect the cubic term in (5). This means 

that -(Ix +1) must be close to the largest eigenvalue, say -(ixf +1) of the Laplace operator in the domain 

of definition of ~ 0 .  Then a standard perturbative method allows to relate the difference Ix-Ixf to N, the 

final result being: 

+1). 

f dx lUd'l 4 
IX-IXf . . . . .  N ,  ~ dx IW'I 2 

where W'(x) is proportional to the eigenfunction of the Laplace operator with eigenvalue -(IXf 

At large N, one expects most of the domain to be filled with an uniform W0, because this 

minimizes the kinetic energy term. From (5) this constant value is such that: 

IqJ012= IIx-l.tlt 1/2, and this is p=N/fl, ~=  volume of the support of W. The crossing between the 

two regimes (small and large N) occurs when a typical length scale of this domain is of the same order 
as p-l/2. 
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From this, the minimum energy H0(N) is a well defined concept. Indeed a solution of (1) with 

smooth initial data, if it remains smooth in the course of  time (as assumed), will conserve this energy, 

and so cannot relax toward a "wavefunction" realizing this energy minimum. However, the things are 

not that simple because, as already said, the difference between H, initial (and forever) value of the 

energy and H0(N) can be taken care of  by small scale fluctuations with a negligible contribution to N. 

Below, we shall develop a coherent schema for this based upon the following principles. First, we 

assume that, for long times the solution of (1) tends pointwise toward the function g 0 ( x )  e ilxt 

minimizing the energy for N given (see in the remarks at the end a less strong statement for that). Let 

8W be the difference at time t between the actual value of ~P(x,t) and g0(x)  e i~tt. The typical length 

scale for 8W remains of  the same order of magnitude as the small amplitude of 8W itself: this keeps 

constant the "kinetic energy" density IV~[ 2, and ensures the conservation of energy. This gives a first 

relation. Then the second relation is obtained by assuming that 8~P is given by the weak turbulence 

equations [10]" this is because the small scales are fed by the nonlinear interactions between modes and 

also because one can stop the Poincar6 expansion in the strength of the nonlinearity at the first nontrivial 

order, where two fluctuations of  wavenumber k l  and k2 can feed resonantly a fluctuation with the 

wavenumber k= kl+k2. 

The weak turbulence equations cannot be solved explicitely. However, we assume that they have 

a self similar behavior for long times. This yields another relationship between the exponents for the 

decay of 8W and of the associated length scale. This is also consistent with the assumption of weak 

turbulence, as the higher order terms can be shown then to be truly negligible. 

Weak turbulence theory is an extension of the Poincar6 expansion to conservative nonlinear 

fields[10]. Let us detail some crucial steps in the derivation of the equations of weak turbulence for the 

present case. Formally this is a perturbation theory for solutions of (1) close to a ground state W0 e~  t. 

The function g 0  depends on the position in a nontrivial way, as it has to be a solution of (5). We shall 

be concerned here with a very large system, that is with a system with a "macroscopic" size, much 

larger than the "microscopic" unit length. As it costs (kinetic) energy for ~P0 to be nonuniform in space 

(because of the IVWI 2 term in H) ,  the ground state g 0  will be as uniform as possible in space, but for 

boundary layers of  "microscopic" thickness of order 1. As the perturbations to W0 we wish to study 

have a wavelength much less than the size of the system, we may take g 0  as uniform in their study. 

From (5), the constant value of IW012 is (l+g). If  we limit ourselves then to linear perturbations, they 

have to satisfy the coupled equations: 

i ~ = ASW + 8W- 21W0128W-~P02 e2i, t 8W* (6.a), 

~Sq~* . 
-i ~ = ArW* + ~W*- 2 ~P0 28W*-W02 e-2~tt ~W (6.b). 

It is more convenient to introduce two auxiliary functions, 8(x,t) and its complex conjugate, 

related to ~W and 8~* as: 
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~W= iW0 eiltt8 and ~W*= -iW 0 e-i~tt~ *. Those functions satisfy the equations(recall that W0 is 

almost independent of x): 

i~=(l+bt+A)~ -(l+g)8* (7.a) 

and 
~8" . 

- i ~ t  =(l+g+A)~ -(l+g)~ (7.b) 

For perturbations uniform in space (,5=0), the solution is: 

~=2(l+l.t)cot+Cl+iC0,where CO and C1 are arbitrary real constants. This twofold degeneracy (a 

constant and a secular terms instead of two exponentials in the generic case) of the eigenproblem is 

linked to thc two conservation relations (N and H). At nonzero wavenumber k, that is by replacing 

practically A by -k 2 in (7), one gets eigenfunctions depending on time as exp[ico(k)q, with c0(k) root of: 

co2(k)=lO+2(l+l.t)k2. (8) 

This dispersion relation shows that there are two different regimes in the "short" wavelength 

(/large wavenumber) limit. If the wavenumber k is much bigger than the inverse size of the system (~L- 
1Nf2-1/D, D dimension of space), but much smaller than (l+lx)l/2 (that we shall take as of order 1 too) 

the dispersion relation is of the d'Alembert type, the k 4 term in (8) may be neglected and one gets sound 

waves with the speed of sound [2(l+p.)] 1/2. It is interesting to notice at this point that the usual 

statement that superflows are irrotational, with a harmonic velocity potential, (A~---0) gets here a precise 

meaning. The condition A~=0 is a particular form of the d'Alembert equation: 

2 
7 Cs A¢=0, 

2 
whith c s square of speed of sound [=2(l+~t) in the present case]. This equation is the "phase 

equation" [20] of NLS and reduces to A(~=0 for a steady, or quasi steady flow; it has nontrivial 

solutions in a ring geometry for instance, because q) is a phase, so that ~) and ~/~+2g are identical. 

When k gets really big, that is much larger than (l+~t)l/2, then the equation for the perturbation 

becomes close to the free field Schr'Odinger equation and c02(k) close to k 4. 

This splitting between two regimes for the dispersion relation will also correspond to two 

different regimes in the cascade of energy towards small scales. In some sense the situation might be 

seen as having some resemblance with the Kolmogorov picture of the turbulent cascade: the "inertial" 
domain would be the intermediate range of length scales between the size of the system and (1+~)-I/'2 , 

and the "viscous range" the length scales much less than (l+~t)-l/2. In the weak turbulence theory, the 

nonlinear interaction between fluctuations depends crucially on their dispersion relation (that is on the 

frequency-wavenumber relation), whence the two different domains for the free decay of fluctuations, 

as a function of their wavelength. 
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The starting point is an expansion of a solution of (1) near the ground state W0 eilzt. The 

perturbation is 8W, a function of x and t with a small amplitude and a small range in space. Indeed this 

fluctuation satisfies at the dominant order, the equation (1) linearized around W0 eittt, as given in (6).Let 

us define the Fourier component of 5W as: 

~Wk = [tI(k)] 1/2 expi[k.x+co(k)t +p.t], 

Then the solution of (1) is of the form: 

W(x,t)= WO e i~tt+f~ I/2~ dk ~tI't k (9), 

where ~ is the volume of the system. Our notations are not completely rigorous, because in a 

finite volume k should take discrete values only, instead of being continuous. We have avoided 

however the rather cumbersome (and useless here) formalism of the large volume limit, and one can 

check that our final expressions are correct in this limit. 

But the form of W(x,t) in (9) is not a solution of (1), because of terms in (1) with are nonlinear 

in the perturbation 8W. Weak turbulence theory results from the expansion at the next order in the 

amplitude 8~.  It is non trivial, because there is then a resonance effect allowing to create a fluctuation 

with wavenumber 

k =k l+  k2 (10), 

by the nonlinear interaction between fluctuations at wavenumber kl  and k2 • This is possible 

because, as we shall see later on, the resonance condition co(k)= co(kl) +co(k2) is compatible with 

(10). However one must take care whether k is in the inertial range [k much less than (l+lx) -1/2] or in 

the "microscopic" range [k bigger or equal to (l+~t)'lf2]. Then the equation of weak turbulence defines 

the slow evolution of the intensities ~I(k) by this resonant interaction. It reads: 

dSIk 
f d k l  dk2 ~(k-kl-k2)  8[m(k)-co(kl)-co(k2)] I~Fo 12 8I(kl)  ~I(k2) (11), 

dt  = 

In this equation the interaction coefficient IW012 is there because one considers quadratic 

nonlinearities generated by the expansion of the cubic term in (1) to second order in 8W, so that a factor 

proportional to W0 remains that represents the strength of the interaction (or of  the nonlinearity). 

Actually the correct equation is a slightly more complicated than the above form because one should add 

to it other combinations coming from different choices of sign for the frequency combinations. But I 

have chosen to write it in a form making as clear as possible its structure and scalings. 

Mathematically speaking, this equation (11) is an akward object, and there is little or no hope 

that a sufficiently explicit solution to the general Cauchy problem can be found for it. However, one can 
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make some progress by looking at self-similar solutions, assuming that this describes the asymptotic 

time behavior. 
Let K be the typical wavenumber for the spectrum of fluctuations fiI(k), a function of time, and 

8I a typical value for 8I(k). By assumption this wavenumber is much bigger than the inverse size of the 

system. But it can be either within the "inertial range" that is much less than (l+lx) 1/2 or within the 

microscopic range, that is of the order or bigger than (1+1.0 1/2. This changes a lot the final result, 

through the estimation of 8[o(k)-to(k l)-O(k2)] in the integrand of (11). We shall consider first the 

most simple case, that is K within the microscopic range, where the dispersion relation is approximately 

the one of the ordinary free field Schr6dinger equation : to2(k)~k 4. Then the equality 

o~(k)=o~(kl)+O)(k2) is compatible with (10) if the scalar product kl.k 2 is zero. Under these conditions, 

the fight hand side of (11), as a function of K and of ~I scales like K D-2 IW0 [2 ~iI 2 , D number of 

8I 
dimensions of space, although the left hand side scales as -~-. Whence by combining those two results 

the scaling: 

K2-D 

t IW012 ' 

From the Wiener-Khintchin theorem, and with our definitions, the correlations of ~F are 

related to ~iI(k) as: 

8I(k)= (2~)D/2fdr ¢ ik'r <8~F*(r0)8~F(r0+r)> 

From which, the amplitude of the fluctuation ~P scales as (KD~I)1/2. This, together with the 

above estimate for ~I, gives: 

K 
8 ~ ~ . ~  

tl/21W01 

But from the energy conservation, one must have K 8~F~e 1/2, where e is the density in space of 

the difference between the actual energy H and the ground state energy H0(N). This expresses that this 

energy difference is almost completely represented by the "kinetic energy" of small scale fluctuations 

~F. 

Combining all this, one obtains: 

81/4 
~F,- (12.a), 

tl/41~F011/2 

that is consistent with all the assumptions made to derive it and yidds too: 

K~ (Et) 1/41W011/2 (12.b). 
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This gives the scaling laws for the late decay, since one expects that the average wavenumber 

reaches this microscopic domain only after it has decayed through the inertial domain. Let us study now 

the decay through the inertial domain. The difference with the other case is in the form of the dispersion 

relation to be used in evaluating 5[o)(k)-c0(kl)-Co(k2)] in (11). Now we have to take 

o)(k)--[2(l+g)] 1/2k. However, it will appear shortly that this dominant order is not sufficient for our 

purpose. We then have to take the next order term in the expansion of o)(k) near k=0: 

(o(k)--[2(l+g)ll/2k [ l l  k2 Io(k4)] 
4(l+g) 

A first integration over k2 in (11) yields: 

dSIk 
= Idkl 5[o)(k)-tO(kl)-to(k-kl)] IWo 12 ~SI(kl) 5I(k-kl) (13). dt 

In the long wavelength limit the resonance condition for the frequencies [i.e. the equality 
(o(k)=cO(kl)+O)(k-kl)] implies that the vectors k and kl are collinear, but this does not contribute to the 

integral because this configuration has a negligible weight (see remarks at the end on this point). At the 

next order we have to consider these two vectors as almost collinear: given k, then kl is to be 

decomposed into its main Cartesian component, kl,z along k, 0 <kl,z <k, and into another small 

component, perpendicular to k and called Akl.Then, under this approximation: 

8[¢o(k)-f.o(k 1)-to(k'k 1)] 

-~ 5 { [2(1 +[.t)] 1/2[k-lk-kll-lk 11]@(1 +g)]-l/2(k3-1k-k 113-1k113) } 

OAk ll-t 3 - - 1 1 / :  kl,z(k-kl,z) l. 
~ 2(l+g) 

Now one may use the same kind of estimation as before, to get the power laws for the decay. 
K2 

Given K, the length of Akl is of order (l+g)l/2, as it results from the above estimate of 5[o)(k)-ol(kl)- 

co(k-k1)]. For a finite system of size L, this is consistent iff the distance between different quantized 

values of k is much less than this estimate for Ak, which holds if the inequality K 2 >>(l+l.t)l/2L -1 is 

tree. This condition is to be considered together with the one defining the inertial subrange: 

(I+g)I/2>>K>>L -I. 

Actually this splits this range into two subdomains: 
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(1 +g)1/2>>K>>(1 +Ix)1/4L-1/2 ,where the approximation developed so far applies, because there 

are many normal modes in the range of variation of Ak, although the other subdomain is at longer 

wavelength defined by: 

(l+g) I/4L-1/2>>K>>L-1. 

In this domain, one cannot any longer consider the modes as having a continuous distribution. 

Instead, one should treat them as a discrete set. This is a challenging problem: many modes might 

interact in this domain, but one cannot use the weak turbulence approximation, at least in its usual form, 

because the set of wavenumber is no more continuous. See remarks at the end on this point. From now 

on I shall deal in the subrange where the set of wavenumbers can be considered as continuous, that is 
whenever the first inequality (l+}.t)l/2>>K>>(l+kt)l/4L-1/2 is satisfied. 

Now the integral Idkl  ~[c0(k)-ta(kl)-0~(k-kl)] IW012 8I(kl) ~I(k-kl) i s ,  up to numerical 

constants, 

~dlAkll IAkll D'2 [dkl.z ~[o)(k)-o)(kl)-O)(k-kl)] ItIJ012 ~I(kl) ~I(k-kl), 

• K 2 fiI 
which is of order ( 1 + g ) ~ 5 1 2 [ ~ ]  D-2. Writing now that this is of the same order as -~.:, o n e  

obtains: 

(l+}.t) ~I [ K2 ] D - 2 1  
"(l+kt) 1/2~ t " 

As in the previous ease the conservation of energy in the cascade imposes that the product ~I K 2 

is constant and equal to e, which yields: 

K~(l+g)D"(et) D' (14). 

_ .  4-D 
with D ' - - ~ 2  D and D ~ ,  and the scaling for ~F  follows from this last relationship 

together with ~uZ K~£ 1/2. 

Notice that the theory becomes inconsistent for D bigger than 3, since equation (14) would 

predict the wavenumber K to decrease in the course of time instead of increase. At D=3, the marginal 

case, this theory is not accurate enough, and would require probably to take into account logarithms, as 

usual in this sort of marginal situation. I do not believe that this signals an inverse cascade for D>3, but 

merely that at higher space dimensions the basic assumptions of this derivation become wrong. Most 

likely, the assumption of weak turbulence becomes invalid in the sense that the fluctuations in real space 

loose their regularity so that the Fourier components of the spectrum are no more independent Gaussian 

variables. These fluctuations should get a fractal support in real space, and the Wiener-Khintchin 

theorem should not apply anymore, because of the lack of homogeneity of the fluctuations on average. 

Assuming that all the assumptions made are true (and practically thus D=2), this shows that, 

for this system, the formal reversibility of the dynamics is not inconsistent with the tendency to reach a 
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sort of ground state. Indeed not all initial data tend to this ground state. The equation (4) may be 

considered too as a nonlinear eigenvalue equation in g, that is the frequency of a purely oscillating 

solution of (1). In 1D, this equation has explicit and real solutions, given by elliptic functions. One can 

check that they are actually many discrete branches of those solutions, appearing as g increases under 

fixed geometric conditions (the Wigner"no level crossing rule" does not seem to have been investigated 

for this nonlinear case, although it constitutes an interesting question). This condition of a fixed N 

restricts a whole continuous branch to a single solution, but more than one solution may remain at fixed 

N and geometry, even though they are countably many of them. However these solutions are quite 

special because they require well defined values of the initial energy, given N. It is possible too that 

they are linearly unstable, but for the ground state, as are unstable the same kind of "excited" solutions 

of the Newell-Whitehead-Segel amplitude equations[11]. I hope to explore this point in the future. 

Let us now discuss some point raised by the previous developments. 

1) The schema we propose for the long time evolution of solutions of NLS is inspired by 

Kolmogorov idea [12] on dissipation in turbulent flows: a cascade takes place from the large scales (L 

in our notations) down to the Kolmogorov scale where the molecular viscosity takes over. It is well 

known too that in real turbulence, this is complicated by intermittency. As explained by Kolmogorov, 

this is because the transfer of energy from a scale to a lower scale is a nonlinear random process, and 

thus the whole cascade itself is like a large number of iterations of random multiplicative process 

(although the extension of these random multiplicative process to more general nonlinear process by 

Derrida[13] should be relevant therein). This leads to log-normal distributions[14] for the intermittent 

fluctuations, and perhaps to a change in the scaling laws of the first Kolmogorov theory. We suggest 

that a similar kind of intermittency is present in this model for space dimensions large enough. 

2) It is tempting to extrapolate from this a sort of nonlinear damping relevant for superflows, as 

one might say that, in physical terms, the cascade to the infinitesimally small scales should stop at a 

molecular length scale, and then become a sort of dissipation. This schema is perhaps valid in a 

qualitative sense, but cannot be so in a quantitative sense. This is because the dissipation mechanism we 

have put into evidence depends in a highly nonlinear fashion on the fluctuations near the ground state, 

and this does not seem to be compatible with any standard form of molecular damping terms, depending 

linearly on the macroscopic fields. Moreover it seems difficult to add such a damping term without 

dropping the property of mass conservation, as well as the possibility of permanent superflows (see 

below). We face in some sense the same problem as when trying to define a turbulent viscosity [15]. A 

more subtle question is equally relevant to this point. We alluded in the beginning to the point that one 

can see a general connection between the present class of problem and the one of the blackbody 

radiation. It is well known that the Jeans phenomenon ( that is the divergence of the total energy at freed 

temperature for a classical field) there is stopped at small scales by the quantum character of the 

fluctuations. Thus one might wonder how the cascade of energy toward the small scales is stopped by 

quantum phenomena. Indeed those quantum phenomena are not represented in our approach, even 

though the NLS equation looks a bit like the Sehrtdinger equation: from the point of view of field 

theory this is an equation for a classical field. The quantum version would replace the c-number field u/ 

by an operator algebra defined [18] by equal time commutation relations of the form: 
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[W(x, t ),W*(x',t)]=C 8(x-x'), 

where C is a constant introduced in order to keep the dimensionless form of NLS, and 8 (.) is 

the Dirac distribution. Within this picture, the cascade toward infinitely small scales is stopped by' 

quantum phenomena, as described by a quantum version of the weak turbulence theory. 

3) We left a bit undefined till now what we had in mind when considering a "nonequilibrium" 

initial situation, but for the fact that, given N, the energy is larger than in the ground state. This may be 

realized in many different ways. In general this initial condition should not correspond to a nonlinear 

eigenstate, as these eigenstates are discrete in a finite system, and for a given N. One expects that an 

excited state will represent something like a large scale flow in superfluid Helium, without normal 

component. Then, from our considerations, this flow can decay, if it is not an exact eigenstate, by the 

nonlinear interactions of short wavelength fluctuations. This picture is different from the familiar one, 

due to Landau, according to whom the flow speed should exceed a critical value to generate elementary 

excitations, and then decay by quantum transitions [16], as in an ordinary quantum system described by 

a linear Schr'6dinger equation. Our picture would take more into account the fundamentally nonlinear 

character of the basic equation. A way of maintaining the system out of equilibrium is to add a time 

dependent external field, that is to change (1) into: 

i - . ~  = A~P + ~F- I~FI2~d+ v(x,t)~P (15), 

where v(x,t) is a real external potential. If  this potential truly depends on space (variable x) and 

time (variable t), then the energy H{W} is no more a constant of the motion, although N{W} still is. As 

suggested in [19] this time dependent v(.,.) could be an imposed in-plane oscillation of a superfluid 

ring. If v(x,0 depends on x on large scales only, then an equilibrium spectrum should exist allowing to 

transfer the injected energy down to the very small scales. This equilibrium spectrum should be a 

stationnary solution of the kinetic equation (11), supporting a constant flux of energy from the large to 

the small scales. Let us try to analyse this by following a method very similar to the Kolmogorov 

approach to scaling in fully developed turbulence. First we assume that the right hand side of the kinetic 

equation (11) describes a transfer from a range of wavenumber to another one. This amounts to replace 
~J(k) 

it by a term of the f o r m ~ ,  where J(k) is precisely this flux. This means that J(k) scales as k times 

the right hand side of (11). In the inertial subrange, one has: 

J(k)--k (l+g) [8I(k)] 2 ( k2 .)D-2 although in the microscopic subrange, one has: 
(l+].t) 1/2, ' 

J(k)~-k (l+p.) [SI(k)] 2 k D-2 . Notice that, as expected, the two expressions for J(k) become the 
k2 

same in the range k-- ~ In the present case, one does not expect the relevant parameter for the 
(1+1~)1/2 • 

Kolmogorov scaling to be J(k), but instead the flux of energy, that is Je=k2J(k), that should be a 

constant, independent of k. In physical terms, this flux je would be proportional to an apparent 

dissipation per unit volume. From the above expression for J(k), one gets the following power spectra 
for the fluctuations 8I(k): 
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In the inertial subrange, 5I(k)=[Je]l/2 kl/2-D (l+it)D/4-1, and in the microscopic range 
5I(k).~[je] 1/2 k-(l+D)/2 (1 +It)-1/2. 

As expected, the total energy stored in this spectrum is infinite, since this is proportional to 

fdk k D+I 5I(k), that diverges at k large. But the total mass stored in this spectrum is infinite too, 

integral for N, ~dk k D-1 ~I(k) also diverges at large k. This means that no time because the 

independent spectrum can transport the energy to the small scales at constant N. Most likely, this means 

that for long times, the solution of (15) will be more and more turbulent at any scale, so that, a sizeable 

part-if not most of-the mass will be contained in those small scales, as one would expect in some sense 

from a system continuously heated. 

4) A major difference between our approach of the decay and the usual one in the superfluid 

litterature is that our dispersion relation is of the decay type in the long wavelength limit and allows 

three modes interaction. According to Landau [16], the dispersion relation for elementary excitations 

(--the linearized perturbations around the ground state) in superfluid Helium 4 is such that to(k)--csk(1- 

Tk2), where ~ is positive, although we have the opposite sign here [it is worth pointing out that 

dissenting views have been presented for what concerns real superfluid Helium 4, as in reference 17]. 

To model such a relation of the non-decay type (Tpositive)within the NLS framework, one might add to 

NLS higher order space derivatives, to obtain: 

i-.&--- = A~,, + ~ A2't'+'~,. 1~,'12~,' (16). 

where ~ is a coefficient with the dimension of an inverse square length, of order 1 in the 

dimensionless unit we use. The dispersion relation (8) is changed into: 

0~2(k)=2( 1+it)(k2-~k4)+(k2-~k4)2 

and now the long wavelength expansion of t~(k) reads: 

re(k)-- [2(1+g)11/2k [ 1-'l~k2+o(k4)] 

1 1 
where T=~ [~ - 2(1+it)]. From this, by taking ~ large enough, it is possible to have a positive 3', 

and thus a nondecay spectrum. With such a spectrum, the relations o~(k)=o~(kl)+~0(k2) and k=kl + k2 

cannot be satisfied simultaneously in the long wavelength limit. Now four modes interaction becomes 

the dominant nonlinear process of decay in the inertial subrange. This kind of interaction takes place by 

resonance between fluctuations with wavenumber k, kl,  k2, k3, such that k+kl  =k2+ k3 and 
to(k)+tO(kl) =to(k2)+ ~0(k3). This is possible: consider the vectors k and kl  as given, then the 

condition on frequencies implies that, in the longwavelength limit, the sum k+lkll is equal to the sum 

Ik21 + Ik31, although the vectors k+kl and k2+ k3 are equal. The locus of the end of the vector k2 is an 

ellipsoid with foci at 0 and k+ kl • Now one can use the same type of estimate as before to get the self- 

similar form for the decay of the spectrum in the inertial subrange. The weak turbulence equation 
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reads(again in an oversimplified form, but correct as far as the general structure is concerned as well as 

the scaling properties): 

dSIk ~dklldk2Sdk3 ~(k+kl_k2_k3 ) 6[o3(k)+cO(kl)_Co(k2)_co(k3) ] 5I(k1) ~I(k2) 8I(k3) (17). --K--= 

Notice that this equation is formally independent on the "ground state" wavefunction W0. This is 

because the nonlinear term in (1) is cubic. A more general form of this interaction term is possible 
however. It would be the second derivative with respect to ~P of the nonlinear coefficient of u/in an 

extended form of NLS (one where U/l~pI2would be replaced by WV(q~12), V(.) even function with real 

values). Let Cs be the sound speed. Thus the right hand side of (17) scales like K 2D-1 513 and by 
CS 

comparing this with the left hand side one gets a first relationship: 

Cs K 2D-1 
51 ~ [ ~ ]  1/2. The second relationship between the scaling quantities (K, t, and 51) comes 

again from the energy conservation: 

K fiq~ ~£1/2 and ~u/~(KD 51) 1/2 Whence the final result: K~(E~-ff--t) 1/5 Notice that this is 
• C$ " 

independent on the dimension D. However it does not hold for the one dimensional (and 

integrable)case, because other invatiants than the Noether invariant with different scaling laws forbid 

any self similar decay. 

5) Till now we claimed that the genetic solution of NLS at D>I decays to the ground state by 

throwing the excess of energy to small scales fluctuations, this picture being inspired by what one 

knows of the 2I) Euler dynamics [4]. Another more general, and less restrictive scenario is possible 

however. Staffing from an initial excited state, with large scale structures only, it seems possible that for 

long times the solution will split into a part with wavenumber in the nondecaying subrange [L -I, L- 

1/2(l+}.t) 1/2] plus noise at shorter wavelength and thus in a decaying subrange. Once this splitting 

would have occured, there would not be any way to decay for the large scales in the non decay 

subrange. If this is true, the ultimate state could well be an excited state, in the nondecaying subrange, 

plus noise• The excited state could be then viewed as a kind of permanent superflow. It is a difficult 

question whether this "superflow" corresponds to a single frequency solution or to a solution with a 

more complex time dependence. I incline to believe that it eannnot have a too complex time dependence, 

because this would lead for long times through Arnol'd diffusion to a decay to small scales• In 

particular, one should take care that it is empirically known that the range of application of the KAM 

theory becomes narrower and narrower as the number of degrees of freedom increases.This kind of 

question is certainly worth exploring by direct numerical simulations. 

6) We neglected in the equation of weak turbulence the contribution of exactly parallel 

wavenumbers. This kind of contribution cannot be treated in the framework of weak turbulence, 

because, for weakly dispersive waves, the interaction becomes strong and cannot be treated 

perturbatively. The random phase approximation, that is needed to derive the weak turbulence 
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equations, loses its validity because of the formation of coherent structures in real space. In the present 

case, these coherent structures are shock waves in a sense to be made more precise below [ordinary 

schock waves are not possible in dissipationless models, as equation (1)]. 

To show that such shock waves exist, at least in a loose sense, it is more convenient to rewrite 

the equation (1) for the phase and the modulus. Let us pose W(x,t)=r(x,t) expi~(x,t), where ~p and r are 

two scalar real fields. Then equation (1) is equivalent to the pair : 

Dr 
~ =  V(rV~) (18.a), 

- r ~ = A r - ( V ~ ) 2 +  r - r  3 (18.b). 

Looking at the derivation of the dispersion relation co(k), one can check that the term responsible 

of the dispersion effect [that is of  the k 4 term in (8)], originates from the term Ar on the right hand side 

of  (18.b). This can be verified directly as follows: the intrinsic length scale can be eliminated from the 

equations (18), only i fAr is dropped in (18.b): without this term the equations are invariant under the 

transform ~p---~o~, t---)6t, x---~o'x, r--~r, ~ arbitrary real non zero number. This shows also that this term 

is negligible in the long wavelength limit. But, as we have seen, the dispersion [that is the correction to 

c0(k) beyond the d'Alembert order] plays a crucial role in the weak turbulence theory. So we can be 

certain that we are investigating other phenomena by dropping this term, as we shall do now. Let us 

transform (18) into a pair of equations for r and the irrotational field ~ =-VO: 

Dr ~- + V(~)  --0, 

DO • 2 
+ V( 7 -  +l-r2)=0. 

In one dimension of space, these equations are in a standard quasilinear form, and so can 

generate shocks from smooth initial conditions. Those shocks are eliminated by the dispersive effects 

represented by the neglected Ar term in (18.b), and so would generate instead "solitons". This is a way 

of transferring the energy in a coherent way (as opposed to the random process described in the weak 

turbulence approximation), although this process is efficient in the inertial range only, because the 

dispersion becomes of order 1 in the microscopic subrange. In this inertial range, one should compare 

the time scale for this coherent decay process with the one predicted by weak turbulence. The time scale 

for the formation of shocks is of the order of a coherence length, say %, divided by an estimate of the 

fluctuation tics of the speed of sound over this length scale: ts ."7-"-. The fluctuation of the sound speed 
6% 

is related itself to the fluctuation of the wavefunction % through cs2= 2(1+1~I'12), which yields t s ~ 4 ,  if 
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one writes the kinetic energy density as e ~ .  The late decay for shock in conservative systems is 

by the emission of solitons, as opposed to the usual dissipation inside the shock layer for dissipative 

systems. The typical size of these solitons is related to the other parameters through the scalings of the 

Korteweg-de Vries balance between weak dispersion and weak nonlinearity. In the present case, this 

gives for the thickness of the solitons ~Xs ~(8Cs)'1/2. The weak turbulence dynamics is the dominant 

effect in the cascade to small scales if it is more efficient, that is faster, than the shock steepening to 

transfer energy to the scale 8Xs after the delay needed for this steepening. In two dimensions, and from 

(14) (and by taking lx as of order 1), the central wavenumber of the weak turbulence spectrum is at 

K(t)~(e2t)l/2, which gives K(ts) ~(~)1/2 at the shock steepening time. At the same time, the shock will 

begin to transfer energy to scales of order 6Xs, that is to wavenumber K'(ts)~(~cs)l/2= (e~.)l/2. The 

weak turbulence mode of decay will be more efficient in general, because ~, is by assumption of the 

order of the initial large scale, a large number then, and that K'(ts) is much larger than K(ts), e being 

finite. However at very small e (the exact limit is for e less or equal to ~-1/2), the shock steepening is the 

dominant process. Indeed the situation might be more complicated than that, because the shock 

steepening might be operating at later times, when the typical scale ~. at a given time cannot be taken 

anymore as large. But if this happens when the length scales are of order 1, one does not expect that the 

sound dispersion relation is applicable anymore. Notice however that it could be that the shock 

steepening plays a role in some part of space to transfer energy to small scales, although it can be 

neglected on average. 
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1. Introduction 
This paper is concerned with solutions of nonlinear wave equations, and other partial 
differential equations that model conservative phenomena in physics and applied math- 
ematics. As the initial value problem is increasingly well understood, the focus of our 
attention is on the more detailed structure of the phase space in which the evolution 
equations are posed. The nonlinear wave equation can be viewed as an infinite dimen- 
sional Hamiltonian system, thus it is natural to study important classes of periodic and 
quasiperiodic solutions in the neighborhood of equilibrium. The paper (Craig & Wayne 
[CW]) constructs periodic solutions for nonlinear wave equations, using a version of the 
Nash-Moser technique to overcome the inherent small divisor problem. In that refer- 
ence, certain generic requirements of nonresonance and genuine nonlinearity are needed 
in the existence proof. This present paper addresses problems in which the hypotheses 
of genuine nonlinearity are not satisfied, where nonetheless the existence of families of 
periodic solutions near equilibrium are obtained. Other recent work on the subject of 
perturbation theory for Hamiltonian systems with infinitely many degrees of freedom 
include Kuksin [K], Wayne [W], PSschel [P] and Albanese, Fr6hlich and Spencer [AFS]. 

Some of the more interesting aspects of our approach to these problems are the ties 
between partial differential equations, Hamiltonian mechanics, and localization theory 
of mathematical physics. Indeed, the central estimates in this work were pioneered by 
FrShlich and Spencer [FS] in the study of the Green's function for random SchrSdinger 
operators. The nonlinear wave equation is not the only equation of interest which has 
Hamiltonlan structure, for which results on periodic and quasiperiodic solutions are of 
interest. We expect the techniques of [CW] and of this paper to extend to the nonlinear 
SchrSdinger equation, versions of the KdV equation and other problems with infinitely 
many degrees of freedom, for which the equilibrium solution is an elliptic stationary 
point. Moreover we expect the analysis of quasiperiodic solutions to be similar to the 
analysis of periodic solutions in these resonant cases, and plan a further publication on 
this subject. 
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This paper describes the construction of periodic solutions of the nonlinear wave 
equation 

0 ~ u = 0 ~ u - g ( x , u )  , 0 < z < ~  , (1.1) 

where the solution u(x,t) satisfies either periodic or Dirichlet boundary conditions at 
x = 0, It. The nonlinear term g(x, u) is taken analytic, with the Taylor expansion in the 
variable u given by 

g(x, = +  2(x)u 2 + g3(x)  3 + - " .  (1.2) 

Well known examples are the sine-Gordon equation 

O~u = O~u - b2 sin(u), (1.3) 

and the ~0d-nonlinear Klein-Gordon equation, 

= - + u d - 1 .  (1.4) 

All of the above partial differential equations can be considered as Hamiltonian systems 
with infinitely many degrees of freedom. Indeed, we may define the Hamiltonian 

H(p,u)= / lp2 +l(o,u)2 + R(x,u)dx , (1.5) 

with OuR(x , u) = g(x, u). Denoting z = (u,p) T, Hamilton's canonical equations read 

= JVH(z), (1.6) 

where J denotes the standard symplectic matrix. The methods of this paper are pertur- 
bative - we construct solutions near the equilibrium point u = 0. For the wave equation 
(1.1) z = 0 is elliptic, thus by analogy with finite dimensional problems one expects 
that the construction of quasiperiodic solutions encounters small divisor problems, and 
a form of the KAM theorem would be used. In fact the small divisor problem arises 
even in the construction of periodic solutions, as the presence of infinitely many degrees 
of freedom introduces a dense set of resonances. 

In the reference [CW] the existence theory for periodic solutions is discussed, under 
hypotheses of nonresonance and genuine nonlinearity. The results are essentially that 
there is an open dense set ~ of nonlinearities such that for g(x, .) G ~, there exist fami- 
lies of periodic solutions of (1.1). The character of these families is typically that of a 
Cantor set foliated by invariant c i r c l e s -  a situation reminiscent of the conclusion of 
the KAM theorem for quasiperiodic solutions in finite dimensional Hamiltonian pertur. 
bation theory. In the results of [CW], the good set ~ depends only upon g~(x),g2(x), 
and g3(x) , the 3-jet of the nonlinearity g(x, .). 

In the present paper we extend the results of [CW] to cases which are equally 
nonresonant, but which are nonlinearly degenerate. These problems fail to satisfy the 
'twist condition' of the previous results, thus the present work enlarges the class ~ of 
nonlinearities for which an existence theorem holds. For example, consider the nonlinear 
term 

g(x, = + gM(x) ,  M + . . .  (1.7) 
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For M > 3, g is not in the set ~, for the curvature of any approximate solution branch 
will vanish. Among other situations this appears for the nonlinear ~d Klein-Gordon 
equation with d > 4. We show in this paper that under more subtle conditions of 
nondegeneracy, again families of periodic solutions of the wave equation (1.1) can be 
constructed. These conditions depend upon the coefficient el(z) of course, and if M 
is odd, upon the first nonzero coefficient gM(Z) of the no~linear term. If the first 
nonzero coefficient gM(Z) has even order, then the existence criterion depends upon a 
certain subset of the (2M - 1)-jet of g(x, u), that is, upon certain of the coefficients 

{gl(X),""", g2M-1 (3~)}. 
We feel that all these results are quite general, and will extend to other equations 

and to the construction of quasiperiodic solutions as well. We point out that in the 
study of quasiperiodic solutions, the analysis of higher order nonlinear degeneracies has 
not been carried out, even in the case of finite dimensional Hamiltonian systems in the 
neighborhood of an elliptic stationary point. 
A c k n o w l e d g e m e n t s :  The authors would like to thank the Universit~ de Gen~ve, the 
Universit~ de Paris 6, MSRI-Berkeley and Oxford University for their hospitality, and 
the National Science Foundation and the Alfred P. Sloan Foundation for their support 
of our research. 

2. Resul t s  
It is instructive to solve the equation linearized about u = 0, 

O~v = O~-v - g~ (x )v (2.1) 

This is done by the elementary method of separation of variables. Let {(~b/(x), 0dj))j=12 o o  

be the complete set of eigenfunction--eigenvalue pairs for the linear Sturm-Liouville 
operator 

d 2 
L(g~)~ = (-~ + g,(~))~ = ~, 

imposing the proper boundary conditions, (,~(0) = ~(~) = 0 in the Diricmet case, =d 
¢(x) = ¢(x  + 7r) in the periodic case.) We will assume that all w 2 are positive with 
little loss of generality. Then a periodic solution to (2.1) is given by 

v(~, t) =,- cos(at + ~)¢~(~) 
~=~¢ 

The general solution of (2.1) is given by sums of these solutions 

O O  

j=l 

parametrized by angles {~j}j----1,c¢ and amplitudes {rj}j=l,°° (action variables {rj}j=l.)2 oo 
These are not usually periodic, but typically quasiperiodic if at most finitely many 
amplitudes rj  are nonzero, and in general they are almost periodic, unless a full set 
of rational relations (infinitely many) exist among the frequencies {wj }. Thus it is a 
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natural question to pose whether some of these periodic (or quasiperiodic, or almost 
periodic) solutions persist for the nonlinear problem. 
H y p o t h e s i s :  (i) Let g(x,u) be ~r periodic in z, and analytic in the strip {lira xl < 
and in u in some neighborhood of the origin. In the case of Dirichlet boundary conditions 
we also ask that g be odd in the (x, u)-plane. 
(ii) We assume that in (1.7), M > 3. 

The cases M = 2, 3 were discussed in reference [1]. Define m = M - 1 if M is odd, 
and m = (min {R; M < R < 2M - 1, R odd, and gR(x) # 0} - 1) if M is even. If no 
such R exists, set m = 2M - 2. 

T h e o r e m  2.1. There exists a generic set QM such that i f  g 6 QM then there are 
uncountably many smaJl periodic solutions to the nonlinear equation (1.1). Furthermore 
(i) The solutions are analytic in a smaller strip {Jim zl < W2}. 

(if) The solutions are c/ose to the linear periodic solutions, and form a Cantor set 
foliated by cirdes. More precisely, there is a smaJ/r 0 and a Cantor set C 6 ( - v  0, r0) 
such that if  r 6 C then there is an angle ~ such that 

lu(z, ; r) - r cos(a(r)t+O¢ (z)l _< cr  M, 
(2.2) 

I n ( r ) -  _< c r  

(iii) The good set QM is open and dense. If  M is odd, ~M depends on/y upon the 
coe~cients el(x) and gM(x). I f  M is even, it depends upon g~(z) and ga(x), for the 
m/n/mum R odd, M < R < 2M - 1, gR(x) # O. If there is no such R, then GM depends 
upon g,(x),gM(x),  and g2M_l(x). 

For an exact description of the topology in which gM is dense, see [CW] section 6. 
An immediate corollary applies to a specific choice of nonlinearity. Consider the 

~d Klein-Gordon equation (1.4) on the interval [0, ~r]. For d = 4 this is addressed in 
[CW], however for d > 5 it fails to satisfy the hypothesis of genuine nonlinearity of that 
paper. When periodic boundary conditions are imposed, the problem can be reduced 
to an analysis of the phase plane for a solution u(x - ct). When Dirichlet conditions 
are imposed this is not the case. For d even, Theorem 2.1 applies, giving the following 
result. 

C o r o l l a r y  2.2. For an open set of parameters b 2 o[ fuU measure, (1.4) has nonlinearity 
within the good set GM, and therefore there exist families of periodic solutions, as 
described in Theorem 2.1. 

This particular dependence of the condition of genuine nonlinearity, and the power 
rn on the coefficients, is natural in terms of the Birkhoff normal form for a dynamical 
system in the neighborhood of an elliptic stationary point. That is, odd terms in the 
Hamiltonian (even terms of the nonlinearity) are generically nonresonant, and do not 
enter the normal form at highest order. Even terms of the Hamiltonian (odd terms of 
the nonlinearity) are generically resonant, affecting the normal form and the frequency 
of the solution at highest order. Furthermore, the next to highest order corrections 
appear at order 2M - 1. 
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We remark here that for any g2(z),ga(x),..., if g~(z) = 0 then the conditions of 
nonresonance of [CW] are violated. Indeed both the Dirichlet problem and the periodic 
problem are infinitely resonant, as the equation linearized about u = 0 is 

O~v = O2v, 

which has an infinite dimensional null space, spanned respectively by the functions 
{sin(ez)e+~*t}, {cos(2gx)e+2itt,sin(2~x)e±2m}. Problems which violate the nonreso- 
nance condition, with a finite but possibly large null space will be addressed in a sub- 
sequent paper. Other than solutions with rational period that are obtained by global 
variational methods [B,R], the infinitely resonant case has not been addressed, so far as 
w e  k n o w .  

3. A nonl inear  latt ice  s y s t e m  
We will take the point of view of embedding a circle into phase space, in such a manner 
that it is invariant with respect to the flow determined by the wave equation (1.1). 
Denoting an embedded circle by 

Oo 

s(x ,¢)  = ~ , j (¢)¢Ax) 
i--1 (3.1) 

~i(~) = ~J(~ + 2~), 

it wiU be invaxiant under flow by the wave equation, and traversed with frequency fl, if 
S(z, ~) satisfies 

~20~S - 02,S + g(z,S) = 0. (3.2) 

To treat the spatial and temporal variables on an equal footing, one expands sj in. 
Fourier series 

oo 

s(~,¢) = ~ ~(j,k) d~%(~). 
./ffil 

k.~--oo 

If S(x, ~) satisfies (3.2), the coefficients of this eigenfunction expansion of S satisfy a~L 
equation over the lattice, (j, k) E Z+ x Z, 

0 =(w~ - ~2k~)~(j, k) + W(~(j ,  k) 
=v(a )~ ( j ,  k) + W(~( j ,  k) (3.3) 

We call this the 'mode interaction equation' of the nonlinear problem (3.2). The term 
V(f~) is diagonal in the given basis, while W(s-) is nonlinear, and at least of order M' 
for small ~. Linearizing about ~" = 0, we have 

V(~)~ = 0, 

with solutions @, a) = (~(J0, ±k0), ~0/k0)  corresponding to a periodic solution of (2.1). 
The point spectrum of V(~) is typically dense in the real line, in particular it accu- 
mulates at zero; this is often called the phenomenon of small divisors. The fact that 
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point spectra of the linearized problem approach zero is the fundamental difficulty of 
the problem. The technique that is presented in [CW] and this paper shows that the 
geometry of the lattice sites associated with the small divisors also plays an important 
role in the existence theory. 

This lattice equation has certain symmetries which are relevant to the problem. Let 
x = (j, k) • Z+ x Z, and write ¥ = ( j , - k ) .  Then S is real if and only if ~(~) = ~(x). 
The equation respects this condition, for Y(i2)(x) = Y(12)(~), and W('g(x)) = W('d(x)). 
Additionally there is the symmetry of an autonomous system; for x = (j, k), define 
T~d(x) = eik~'~(x). This is a unitary operator on £2(Z+ x Z). The lattice equation is 
covariant with respect to T~, indeed T~ commutes with Y(f~), and 

T~W(s~(x) = W ( T ~ ( x ) .  

Other group actions may also respect the equation (1.1), however these will not be 
addressed in this paper. 

The existence theory is started by solving an approximate problem, given by pro- 
jection of (3.3) onto a finite subregion of the lattice; B 0 = {x E Z+ x Z; Ix[ _< L0}. The 
approximate problem is solved under conditions of linear nonresonance. Fix a constant 
v > m + 3 .  

D e f i n i t i o n  a .1 .  Detlne w - O~jo/k o. The  frequency sequence (0dj}j°°=l is (d0,L0)- 
non.resonant wi th  oJ i l L  o > >  IJol + Ikol, • d  

(i) for ~I  o < IJl + Ikl ___ Lo, 
do 

Ik - wjl _> 
(IJl + Ikl)"" 

( i0  For ~I  (j, k) # (Jo, ±ko),  with IJl + Ikl < Lo, 

Io~ - ~2k21 _> do. 

Note:  If a sequence of L 0 --* oo, with d o = o(Lol/2), then an open dense set of 
coefficients el(x) are (do, L0)-nonresonant with w for some L o. This is a result from 
[ cw] .  

Writing IIoV(f~ ) = V0(f~), and IIoW(II0~ = W0(~, the approximate equations on 
£2(B0) are written 

V0(~)Y+ Wo( ~ = 0. (3.4) 

Then the linearized equation about ~" = 0 is simply 

v o ( n ) ( ~  = o. (3.5) 

This linear operator has a nontrivial null space for ~ = w = Wjo/k o. Since the problem is 
(do, L0)-nonresonant , the null space is two dimensional, spanned by ~(p) = P~(J0, k0) + 
P~(J0, -k0),  with p E C. Let N = {(J0, k0), (J0, -k0)},  the support of the null vectors, 
and define orthogonal projections Q onto ~?2(N), and P = (1 - Q). Equation (3.4) is 
solved via a Lyapounov-Schmidt decomposition. 

e(Vo(n)Uo + Wo(~(p) + Uo)) = o (3.6) 
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Q(Vo(fl)qo(p ) + Wo(~(p) + Uo) ) = 0 (3.7) 
u o = Pu  0 

Define spaces that  account for exponential decay of sequences; 7"/~, = {u E / 2 ( Z  + × 
Z); []u[[~ -= ) - ~ e z + x z  e2~l~l[u(x)[ 2 < oo}. These form a scale of Hilbert spaces, 7-/~ _C 
7-/a_~ for all 0 < 7 _< a. We ask of the nonlinear term that W E C~(7-/t, : ~ t , -~ )  for all 
0 < 3' < a < ~, with norms 

IIW(~)ll~_~ 

IlO,,W(u)vll~_-t 

IID~ W(u )[w, v] ll._., 

The Taylor expansion of W takes the 
the term W ( ~  is J -mul t i l inear  in u. 

Cw M 
< - - ~ - r  Ilull. 

C w  M 1 

forrfl W(u)  = W(M)(u) At- W(M+l)(u) de..., where 
We will assume that W(J) is J -mul t i l inear  and 

symmetric in u, although the symmetry is not essential for the existence theorem. The 
lattice nonlinearity that  comes from the nonlinear wave equation satisfies the above 
conditions. 

L e m r n a  3.2.  f o r r ' ~  < (do/3L~),p o = r0, the equation (3.6) has a solution Uo(x;p ,~  ) 
which is analytic in a complex po-neighborhood of  the set Af o - {(p, fl); Ilpll < ~o, I~ - 
w I < r~'}. Furthermore, for '~/2 < a o < - 5 -  1 /L  o there is an estimate 

[[Uo(X;p, gl)lla o < ][p[[ M3CWL°  
- d o  

This solution is covariant with respect to the translations T~, 

T~uo(X; p, ~)  = Uo(X; T~p, ~) 

(where by notational abuse we denote rotations in the p-plane also by T~.) 

These sequences form a family of embedded circles, paramet~zed by (liP[I, ~, ~) ,  
which are solutions of the approximate problem (3.6). 

To finish the approximate bifurcation problem, equation (3.7) is also solved. This 
is in the form of a mapping, taking (p, ~)  E .IV" 0 --* R 2. The zero set of the mapping 
consists locally of the a axis {p = 0}, and a surface (p, ~20(p) ) given as a graph over 
a neighborhood of zero in £2(N). A simple analysis of the Taylor expansion of this 
mapping determines that  

~0(P) = ~ + A~ ")IIpI[ ' (  1 + o(llpll)). (3.8) 

A straightforward per turbat ion expansion, which is left to the reader, wiU determine 
the constant A~ m). If M is odd, then m = M - 1 and 

A~m) 1 @(p)[W(oM)[(~o(p))M]) (3.9) 
= 2k02~ II~(p)ll M+I 
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When  M is even, take R to be the least odd index, M < R _< 2 M -  1, such that  
W0 (R) ~ 0. If R < 2 M  - 1, then m = R - 1, and 

A~,~) 1 (qo(p)lW(oR)[(qo(p))n]> 
= 2k2ow II~(P)ll R+a 

(3.10) 

If R = 2 M  - 1, or there is no such R, then m = 2M - 2, and the per turbat ion theory 
determines first that  

u~M)(x; p, f~) = - (PV0(~2)P) -1  p ( w ( M )  [(~(p))M]) 

and then 

s20(p) = ~  + - -  
1 (~(p)[W(oZM-1)[(~(p))ZM-1]) 

2kgw II~(P) ll ~ 
M (qo(p)[W(M)[(~(p)) M-I,u~M)]> (3.11) 

+ 2kg~ II~(p)ll ~ + °(IIPlI2M-~) 

This per turbat ion  analysis generalizes the formal results of [KT], regarding solutions of 
the nonlinear Klein-Gordon equation. 

The analog of the 'twist condition' of [CW] is a condition on the nonvaaishing of the 

coefficients A~ m). This will ensure that  the dependence of the frequency of the solution 
upon the ampli tude is sufficiently nondegenerate. 

The full nonlinear equations (3.3) are also considered in a Lyapounov-Schmidt  
decomposit ion 

P(V(~)~,  + W(~(p) + u)) = O, (3.12) 

Q(V(12)qo(p) + W(qo(p) + u)) = 0. (3.13) 

The approximate solution u 0 of (3.6) is a close approximation to the full equation (3.12), 
for it satisfies the est imate 

CwIIpll M -~oL 
IIP(W(~)u 0 + w(~(p) +Uo))lLo_~o < ~ ~ °. (3.14) 

However, to adjust  this approximate solution to a full solution involves the small divisor 
problem. The exact solution is obtained not over all of the parameter  region No, but  
on a closed Cantor  subset A/" c A/0, on which the resonances of the problem are under 
bet ter  control. The solutions are obtained using Newton iteration steps in conjunction 
with approximations of the lattice Z+ x Z by an increasing family of finite subdomalns 
B n = {z E Z+ x Z; Ixl < L02n }. To state the existence result, fax 1/2 < r /<  1. 

T h e o r e m  3.3.  Assume that the sequence {wj}j¢~=l is (do,Lo)-nonresonant with w for 
d o > Lo  ~, for L o sut~ciently large. Then there is a constant to, a sequence u(x;p, 12) E 
Tlv/2 which is C ¢¢ on A/" 0 = Af0(r0) , and a Cantor subset A/" C_ A/" o such that /'or 
(p, fl) E A/', u is a solution o£(3.12). Furthermore 

Ilu - ~011~/~ - CIIpll Me-~°L°/L (3.15) 
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The second bifurcation equation (3.13) can also be solved, giving a C °°, T¢- 
invariant solution surface (p, 12(p)) in addition to the trivial branch of solutions p = 0. 
This solution surface is close to the approximate surface (p, 120(p)), however unless we 
specify fur ther  conditions it will not necessarily intersect the remaining set Af, and 
(3.12) and (3.13) will not be simultaneously satisfied. We ask that  in addition to being 
(do, L0)-  nonresonant,  the approximate nonlinear problem satisfies a tw i s t  cond i t i on .  
Then the surface (p, 12(p)) will intersect Af, giving rise to solutions of the full problem 
(3.3). For the following we fix 0 < u < (1 - r/). 

T h e o r e m  3.4. / f  the approximate problem (3.4) also satisfies the quantitative t ~ s t  

condition Ig~) l  _> Lo ~, then the solution surface (p, a(p))  of  (3.13) intemects X .  Define 
c = {0 < r < r0; Ilpll = ( p , a ( p ) )  • N } ,  the set for which a solution of the full problem 
is obtained. Then meas (C) > 0, and is in fact of order r 0. 

The intersection points correspond to analytic solutions of the nonlinear wave equa- 
tion (1.1), through their eigenfunction expansion. This proves Theorem 2.1 of the 
previous section. 

Through exact or near resonance, the Cantor set C may not have r = 0 as an 
accumulation point, for (p, ft) = (0,w) may be too resonant, and not in Af. However 
if the frequency sequence {wj}]°=l is fully nonresonant with w, then C does accumulate 
at zero, and in addition there is an estimate of its density nearby. Let g > m + 3 and 
"ff > ~ + 1 be fixed. 

T h e o r e m  3.5. Suppose that a (do,Lo)-nonresonant sequence {0)j}jC~=l satisfies the 
conditions of  full nonresonance. 

(i) For a/1 0 < I(J, k)l < oo, 
do [k - ~oj[ >_ 

([J[ + [k[) w 

(ii) For all (j, k) # (Jo, +ko), 

do 

(IJl + [kl) ~" 

Define C(rl)  = C N [0, rl]. Then there is an exponent-fi such that 

meas(C(r l )  ) >_ r1(1 - Cr~l) 

for all O < r 1 < r o. 

One can additionally make an estimate of the size of ~, there are similar estimates 
in [cw]. 
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4. P r o o f  o f  T h e o r e m  3.3 
The proof is via a modified Newton iteration scheme, similar to the Nash-Moser method. 
The major difference is the presence of a null space, and the sensitive parametric de- 
pendence of the approximate solutions and the linearized operator. Thus during the 
iteration, an acceptable set of parameters must be chosen as well, resulting ultimately 
in the Cantor set Af on which the first bifurcation equation (3.12) is solved. The second 
bifurcation equation is a finite dimensional mapping. The zero set corresponding to a 
nontrivial solution is given by a graph (p, ~(p)), which gives a relationship between the 
action and the frequency of a solution, called the f r e q u e n c y  map .  This exhibits one 
of the differences of the present technique from the more classical versions of the KAM 
theorem, in which the problem is assumed nonlinearly nondegenerate, the frequency 
map is performed first, and only then does the analysis of the invariant sets take place. 

An outline of the iteration is as follows. We choose: 
(1) A sequence of length scales L n = L02" which define the approximating domains 

B ,  = {[x[ < L,}  which exhaust Z+ x Z. 
(2) A sequence of tolerances for small divisors (small eigenvalues) ~,, = L~ ~ ,  for a 

suitable a > 0. 
(3) A sequence of lengths ~n = L~ over which linear resonances are decoupled. 
(4) A sequence 7 ,  = Co/(n + 1) 2 which governs loss of exponential decay of the ap- 

proximate solutions throughout the the iteration. 
~n 

(5) And a rapidly convergent sequence e n = e 0 , for 1 < g < 2, which will bound the 
error terms during the iteration. 
The size of the error is dominated by a rapidly convergent sequence as the itera- 

tion scheme has quadratic errors; this is the usual phenomenon with the Nash-Moser 
technique. 

The major issue to contend with is the invertibility of relevant linearized operators. 
Let B C Z+ x Z be a subdomain of the lattice. We define the H a m i l t o n l a n  operator 
on ~ ( B )  by 

HB(P,~; u) = (V(-Q) + DuW(~(p ) + u)) B . 

The subscript B denotes the restriction of the operators to t~(B). Invertibility de- 
pends crucially upon the small spectra of the operator VB(~), as the following result 
demonstrates. 

L e m m a  4.1. Let A C Z + × Z be a domain such that [Y(~)(x, x)l > d o/'or a / /x  E A. 
Then for r~ - l  /do < <  1 the Green's function 

a A(x , y) = (V(~t) + D,,W(~(p) + tt))Am(x, y) 

satisfies the estimate 
C 

[[GAI[,,o < do 

We call a lattice site s E Z+ ×Z s ingular  if [V(f~)(s, s)[ < do, and regular otherwise. 
Connected regions of singular sites are called singular regions. The wave equation has 
singular regions consisting of either isolated sites, or else two adjacent sites, S = {s 1, s2 }, 
with s 1 = (j, k), s 2 = (j + 1, k). We will consider local I-Imaziltonians defined on 
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neighborhoods of singular regions. Let S C_ Bn+ I \ B . and C t.+, ( S ) = {x;dist ( x, S) < 
£.+1}. We will be concerned with the operators Hs(p, fl; u . )  and Hc,.+t(s)(p, fl; u.).  

The proof of Theorem 3.3 is by induction on the following statements. 
(n.1) There is a sequence un(x; p, n)  = Uo(X; p, n ) +  ~'~jto vj(x; p, f l ) in  £2(B,+1), which 
is C °O on Afo, analytic in a 6,+xro/L2 complex neighborhood of .A/',+ 1 such that 

I[e(w(f~)u.+W(~(p) + u.))ll.. _ IIplIM*. 
I I v . L . - ~ .  c ~ , .  M 

< ~.+17"---~. Ilpll 

for some fixed constant s. 
(n.2) There exists a closed domain A/',+ 1 c A/', c . . .  Af 0 with the following properties. 
(i) If (p, ~2) E A/'.+ 1 , and .5'1, S 2 C_ B.* are any two singular regions, then 

dist ($1, $2) > 2£.+ 1 

(ii) If (p,~2) E N'.+ 1, and S is a singular region in B . + I \ B . ,  then 

dist (spec ( Hs(p, f~; Un) ), O) > 6n+ 1 

dist (spec (Hc,.+,(s)(p , f/; u ,)) ,  0) > 6,+ 1 

(iii) Any Coo, T.~-invariant surface f~(p) = w + AIIpllm(1 + o(llPll)), with IAI > Lff ~ 
intersects A/,+ 1 with nonzero measure; 

meas({r 6 [0, r0); Ilpll -- r,(p,~2(p)) 6 A/',+I} ) > r0(1 - Cry) 

A consequence of (n.2)(i)(ii) is that the Green's function for any E C_ B ~ \ N  is 
controlled on the parameter region Am+ 1. 

L e m m a  4.2. Let A be a nonsingular region, and E c_C_ (Bn+I\N)  O A. The Green's 
function satis~es Cn 

IIGE(p, n;u.)ll . < 
- 6 , + 1 7  ~ ' 

and under perturbations o f u ,  of size I1~ - ~.11~.-~. -< IIPlIM'./~.+~7~, 

2C~ 
HG (p,n;u)Lo_2,. < ,  . 

n+l~[n 

Proof .  The proof is the same as in [CW], Section 5. The arguments involve the decou- 
pling of the local Hamiltonians at singular regions of Bn+ 1 \N.  AS long as the spectra of 
the local Hamiltoniaas are controlled, and the singular regions are sufficiently separated, 
resolvant expansions can be employed to recover the full Green's function. [] 

Induction step (n.1) will follow from ((n - 1).2)(i)(ii) and Lemma 4.2. Indeed the 
Newton iteration step is 

?)n--1 = -- C~ Bn \ N ( B '  ~'~; Un-1  ) (V(~'~)?2n-1 "~ W(~o(p)  -~- ZLn_ 1)) Bn \ N  ' 

U n = Un_ 1 + Vn_ 1 
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With this definition of u ,  the Taylor remainder theorem will exhibit a quadratic error, 
and the error due to domain truncation will be exponentially small if some decay is 
sacrificed. We again refer to [CW] for details of the convergence proof. 

The remaining task is to realize a large set of parameters Af,+ 1 C_ Af, such that (n.2) 
is satisfied. Conditions (i) and (ii) decrease the size of Af,, while condition (iii) requires 
that it be sufficiently large, and further satisfy certain geometrical properties related 
to the order of contact of the nonlinear degeneracy. Central to the verification of this 
induction step is a lemma on eigenvalue perturbation theory for the local Hamiltonians. 
For the case M even we introduce an additional hypothesis on the lattice nonlinearity 
W, a restriction on the self-interaction of the system within a singular region. It will 
always be satisfied for the nonlinear wave equation. The case M odd has no such 
requirement. 
H y p o t h e s i s :  If z, w E S a singular region, then for M < J < R, 

(6(z)iDJ~W(O)[(cOv~(p))j-1 , 6(w)]) = 0 

Consider a self adjoint operator H(a) depending upon a parameter a, and suppose 
an eigenvector-~igenvalue pair (¢(a), e(a)) a H(a) is smooth. Then 

Oae(a) = (¢(a)lOaH(a)lC(a)) , (4.1) 

which is known as the Feynman-tteUman formula. 

L e m m a  4.3. Let (¢(p, fl), e(p, ~)) be an eigenvector--eigenvalue pair for Hc(s)(P, ~)" 
Then 

I(¢(P, ~)[cgaHc(s)(P, fl)l¢(P, f~))[ > C1L2n (4.2) 

For (p, ~) satisfying (n + 1.2)(i), 

[ (¢(P, fl)lOvHc(s)(P, f~)[¢(P, fl))[ < 6'2 IlPll m-1. (4.3) 
Let e(p, ~2) be an eigenvalue of a local Hamiltonian (labeled by ordering), and Z be 
the set in Af 0 on wh/ch e(p, 12) vanishes. Z is given by a graph (p, flz(P)), and i f  
(Pl, ~Z(Pl )), (P2, ~z(P2)) are nearby points satisfying (n.2)(i), then 

[~z(P2)- ~Z(Pl)[ ~ LC~3 ]llp2l[ " -Ilplllm[ (4.4) 

The proof of this is similar to Lemma 4.14 of [CW]. 
This result allows us to control the excisions of parameters in order to satisfy 

(n.2)(iii). Consider a T~ invariant surface (p, a(p)),  with f~(p) = w + Allpllm(1 +o(llpll)), 

and IAI > Lff ~. Let S c_ Bn+I\B . be a singular region, and e(p, ~2) an eigenvalue of a lo- 
cal Hamiltonian Hc(s). Suppose that for some p~, e(pl, ~(Pl)) = 0, and that (Pl, ~(Pl)) 
satisfies (n.2)(i). We axe concerned with nearby points on the surface (p, ~(p)). In or- 
der to inductively construct the next set Afn+l a g,+~/L~-neighborhood of Z is excised 
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from Af n. If the point (p, fl(p)) is excised in this process, then 

~ .+1  > In(p)  - n z ( p ) l  L~  - 

> In(p)  - n ( p , ) l  - I ~ z ( p ~ )  - n z ( p ) l  
2 m 

> ( I )~ /2 l -  C~IL.)IIIp=II -IIp, l l"l  

Hence any p such that lip - Pl I1" > (4/I.~l)(,~,,+~/L~) is not excised, and I~(P, n(p)) l  > 
~,,+l. Lemma 4.3 provides the main result needed to verify the induction statement 
(n.2)(iii), and with some patience the convergence proof win follow. 
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Abstract:  We study the homoclinic tangle associated with the phase space flow of 
a particle in a cubic potential, subject to small and temporally periodic forcing. We 
construct a bifurcation diagram describing the changes in the Birkhoff signature of the 
tangle as the strength and frequency of the forcing axe varied. From this diagram we 
find special regions in the parameter space for which we can approximate some of the 
properties of the flow. For example, we approximate the escape rates from the vicinity 
of the homoclinic tangle and the elongation rate of segments of the unstable manifold. 
The methods we use can be easily applied to many time periodic, near integrable open 
flows. These are flows which contain a single loop of broken sepaxatrices, so that once a 
particle escapes the vicinity of the homoclinic tangle it never comes back. This study is 
essentially analytical; we use solutions of the autonomous system and do not compute 
the trajectories of the chaotic, time dependent flow. 

Section 1. Introduct ion  

Flows are often visualized by passive traces in the fluid. The large scale structures 
one then observes are the signature of the unstable manifolds of hyperbolic invaxiant sets. 
In fact, the stable and unstable manifolds are the appropriate extensions of streamlines 
to unsteady flows [1]. This observation arises by considering the dynamical system 
which governs the motion of fluid particles, ~ = u(x, t). Further, it is established in 
[2], [3], and [4] that the properties of the stable and unstable manifolds supply both 
qualitative and quantitative information regarding the transport properties of a large 
class of dynamical systems. Hence, the ideas and methods developed in these papers 
are applicable in many fields of physics. 

In [3], we developed analytical methods for estimating some of the properties of 
chaotic maps and flows using the geometrical structure of the homoclinic tangle. Here, 
we report some preliminary results regarding the application of these methods to a 
specific physical example. We view this work as a first step in an examination of their 
usefulness and accuracy. We believe this study demonstrates their usefulness; we obtain 
approximate results using seconds of a workstation time, whereas other methods require 
typically hours of supercomputer time. A more comprehensive study, which includes 
numerical simulations and error analysis, aimed at examining the accuracy of these 
methods, is underway. 

The methods presented here can be easily applied to any near integrable, two 
dimensional, area preserving, time periodic open flow. These are flows of the form: 

dx og~ (x, y, t) 

d~ Ou (1.1) 
dy OHm(x, y, 5) 
dt Ox 
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where H~(x,y, t)  = H ~ ( x , y , t + T )  is analytic in ~ near ~ = 0 and Ho(x,y, t)  =- Ho(x,y). 
In addition, the flow (1.1) satisfies the following three assumptions: 

(1.A) The system (1.1) possesses an hyperbolic periodic orbit p(t) = (x(t), y(t),t) 0]peri0d 
T. 

(1.B) For ~ • 0 the stable (resp. unstable) manifold of p have one part which intersects 
the unstable (resp. stable) manifold transversly. The orbits along which the stable 
and unstable manifolds intersect are called homoclinic orbits. 

(1.c) The other part of the stable (resp. unstable) manifold of p extends to in~nity, 
possessing no homoclinic orbits. 
The simplest interesting example of a system of the form (1.1), satisfying (1.A-1.C), 

is the phase space flow of a particle in a forced cubic potential, with the Hamiltonian: 

1 2 1 
H~(x,y,t)  = ~y + ( 2  x2 - !x3)(1 + ~ c ° s ( w t ) ) 3  (1.2) 

where 5 and w are the two non-dimensional parameters, measuring, respectively, the 
strength and frequency of the forcing. Here we study this example in detail. This 
problem has direct applications in mechanics and chemistry and may also be considered 
as the normal form of a more complicated Hamiltonian system. Another example of a 
flow satisfying these assumptions is that of inviscid fluid particles in the vicinity of an 
axisymmetric vortex ring, where the core of the ring is small and its shape is a nearly 
circular ellipse. 

The most significant assumption we make on (1.1) is (1.C). It implies that there is 
only one tangle of the stable and unstable manifolds, and hence there is no mechanism 
for re-entrainment. This is the crucial assumption made in [3]. This constraint excludes 
interesting dynamical systems such as the forced DuiTing Eq., the forced pendulum, etc. 
For simplicity of notation we also assume in (1.A - 1.C) that the homoclinic tangle is 
associated with the intersection of the stable an unstable manifolds of a single hyperbolic 
periodic orbit p(t). The results can be easily extended to different cases such as the 
the motion of inviscid fluid particles in the vicinity of an oscillating vortex pair (OVP), 
studied in [1]. 

As the theories for periodically forced autonomous systems suggest, one should 
start by reducing the continuous time system (1.1) to a two dimensional area preserving 
map. Formally, it is a well known procedure: one introduces a Poincar4 section in 
time to obtain the required map [5],[6], [1]. Indeed, the transport theory is based upon 
the geometry of the manifolds in such a Poincard section. However, in most cases, 
for ~ > 0, one can only compute this Poincar4 map numerically. Moreover, even if 
the map is found explicitly, it is unclear how to extract the structure of the manifolds 
analytically. Previous studies of the transport properties of time periodic flows and 
two dimensional maps consist of extensive numericM simulations in which exact or 
approximate trajectories of the chaotic system are calculated (e.g. [1], [2] and [7-9]). 
Here, instead of finding the Poincar~ map explicitly, we use the Whisker map ([10], [11], 
[3]) to approximate the geometrical properties of the structure of its manifolds. In this 
way, we isolate regions in the parameter space (c, w) for which we can approximate the 
topology of the manifolds with simpler structures. For these simpler structures we use 
the methods developed in [3] to estimate properties of the flow such as the transport 
rates and topological entropy. 
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We stress that our approach is to approximate the topology of the homoclinic tangle 
of the Poincar@ map by a similar topological structure. The Whisker map serves only 
as a tool to find the properties of that structure. This is to be contrasted with previous 
studies (e.g. [7], [10] and [11]) in which the Whisker map itself is used to approximate 
the dynamics of the perturbed continuous system. 

This paper is organized as follows; in section 2 we argue that (1.2) gives rise to a 
system satisfying (1.A-1.C). Then, we set up the notation for classifying the homoclinic 
tangles and define precisely the quantities we estimate in this paper. We end this section 
with a definition of some of the geometrical parameters of the homoclinic tangle. In 
section 3 we compute the Whisker map for (1.1) with the Hamiltonian (1.2) and use it 
to estimate the geometrical parameters which were defined in section 2. The results are 
summarized in a bifurcation diagram, which describes the dependence of the geometrical 
parameters on (c,w). In section 4, we summarize some of the methods developed in [3] 
for estimating the development of tangles in specific region of phase space. Then, we 
use this construction to estimate the exponential growth rate of line elements for our 
example. Finally, we estimate the escape rates for these tangles using the Whisker map 
and the methods developed in [3]. 

Section 2. The Geometrical  Properties  of the Homoclinic  Tangle. 

a. T h e  O p e n  Flow Property.  First, we verify that for e 7~ 0 the Hamiltonian (1.2) 
give rise to a system which satisfies the assumption (1.A-1.C). Writing the system (1.1) 
explicitly for our example, we obtain: 

dx 
d--[ = Y  

(2.1) 
dy = x(x - 1)(1 + c cos(wt)) 
dt 

For all e, the points (0, 0) and (1, 0) are fixed points of (2.1). When e = 0, the fixed 
point (1, 0) is hyperbolic, hence for 5 sufficiently small (1, 0) remains hyperbolic and 
assumption (1.A) is satisfied. For the unperturbed system assumption (1.C) clearly 
holds. It is not hard to prove that' for e sufficiently small the perturbed system must 
satisfy (1.C) as well. Finally, for c = 0, the parts of the stable and unstable manifolds 
which do not extend to infinity coincide. To prove that (1.B) holds for e 7~ 0 we calculate 
the Melnikov function and verify that it has simple zeroes [5],[6]. First, we solve for the 
unperturbed homoclinic orbit, q0(t), 

qo(t) = (1 - 3sech2(t/2)'-3sech2(t/2)tanh(t/2)2 2 ~] (2.2) 

1 0 where, with no loss of generality, we choose q0(0) = ( - 7 , ) "  Using (2.2) we compute 
the Melnikov function M(t0): 

f_ '~ to))  (~,y)=qo(,) M(to) = y ( - x  + x2)cos(w(t + dt = C(w)sin(aJto), (2.3) 

where 

C(aJ) = ~9 io ~ c°shS(t/2)sinh(t/2) (1 - 3seche(t/2))sin(cot)dt. (2.4) 
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1. C(co), The  Max ima l  M a g n i t u d e  of  the  Melnikov Funct ion .  

The function C(co) is plotted in figure 1. Notice that C(w) = 0 when aJ = 1 and when 
co ~ 0, oc. Therefore, the analysis in this paper applies to small e values and all finite 
values of w, excluding neighborhoods of 0 and 1. We discuss the possible behavior near 
these special values of co in the conclusion section. 

b. Qual i ta t ive  descr ip t ion  of  the  tangle  and  the transport problem.  So 
far we have verified that for c sufficiently small the system (2.1) satisfies the required 
assumptions. We introduce a Poincar~ crossection in time and define the Poinear~ map, 
F, as the return map to this crossection. For c sufficiently small F has a hyperbolic fixed 
point p = (1,0), and its stable and unstable manifolds intersect transversly, constituting 
a homoclinic tangle such as the one drawn in figure 2. In this paper we study the 
properties of this tangle. 

We call a homoclinic point q0 a primary inter~ection point (pip) if the segments 
of the stable and unstable manifolds connecting the fixed point p to qo, denoted by 
Sip, q0], U[p, q0] respectively, intersect only in p and q0 (see figure 2). The pip orbit of 
q0 is the set {qi}, i E Z, where qi is the i ~h image of q0 under the map. 

Since the Melnikov function has two simple zeroes every period of the perturbation 
(Eq. (2.3)), the Poincar~ map F has exactly two pip orbits, denoted by qi and pi in 
figure 2. We denote the region bounded by S[p, po] and U~,po] by S. We define the 
segments of W_~ and W_~ with end points pi, qi as follows: 

Ji = S[qi,pi] J~ = S(Pi-I-1, qi) K i = U[qi,Plq-1] K~ = U(pi, qi) (2 ,5)  

Clearly, M~ = Fn(Mo) where M stands for any of the segments J, K, J', K'.  Let Dr 
denote the region bounded by Jr and K~ and Er the region bounded by Kr and J~. We 
will call these regions "lobes". 

Eqs. (2.1) and (2.3) imply that for co > 1, at the Poincar~ section t = 0, p0 
is located on the x-axis and the orientation of the manifolds at p0 is as depicted in 
figure 2. However, when c~ < 1 this Poincar~ map is symmetric about q0; the same 
structure appears if one considers the Poincarfi section at t = 7r/w. For simplicity of 
presentation, we will limit our discussions to the case w > 1, and quote the results for 
w < l .  
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Figure 2. The Homoclinic Tangle 
qi and pi  are pip orbits, ri  is not. 

Denoting the parts of the stable and unstable manifolds of _F which satisfy (1.B) 
by W_~ and W_~ respectively, it follows that W ~ = + U,~=-oo Kn u K~, and W "+ = 
Un°°___oo J,~ U J~. Denoting the other parts of the manifolds by W_ ~ and W_ ~ respectively, 
the assumption (1.C) implies that W_ ~ and W_ u do not contain any homoclinic points. 
It is not hard to prove that for ~ sufficiently small and n > 0 the sequences {K~} and 
{YLn} accumulate along W_ ~ and W_ ~ respectively and contain no homoclinic points as 
well. This is the main assumption made in [3] regarding the structure of the manifolds. 
We call a flow (a map) which satisfy this assumption an open flow ( ,~p) .  

For open flows, an initial distribution of points in the vicinity of the homoclinic 
loop will eventually be carried to infinity. In may applications it is important to obtain 
the rate at which the initial distribution disperses. For example, in Chemistry this may 
correspond to the dissociation rates [12] and in the fluid mechanics context it corre- 
sponds to the effective diffusion rate in that region. Another quantity of interest is the 
boundary length; if one considers reacting fluids, the amount of product is proportional 
to the length of the boundary. Finally, when the particles respond to the stretching 
exerted by the flow (e.g. polymers suspended in a fluid), the distribution of stretching 
rates experienced by line elements may be important. We define the following measures 
of these properties for an initial uniform distribution of initial conditions in the region S: 

1. The amount of phase space area originating in S which escapes at the n th iteration: 

c,~ = # ( F n - I ( s )  n S) - #(Fn(S)  n S), 

where #(A) denotes the area of the set A. 
2. The amount of phase space area originating in S which stays in S after the n th 

iteration: 
nn = #(Fn(S) n S). 

3. The length of the boundary of F~(S),  

n - 1  oo  

= Z[L(K ) + + Z[L(J ) + 
- - O O  n 

where L ( K )  denotes the arc length of the segment K. 
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4. The distribution of the stretching rates along the boundary of F ' ( S ) ,  

L(K  n Do) 
fl(n) = L(Ko N D-n)" 

It is easy to show that the above quantities are independent, up to a shift in n, 
of the definition of the "origin" of the orbit pi and of the particular Poincar6 section 
one chooses. It follows from the form of (2.1) that one can choose a Poincar~ section 
for which p0 = (x0, 0) and the map is symmetric with respect to a reflection about 
the x-axis with a time reversal (see [2] for a general discussion). Such a choice is both 
elegant and efficient computationally. 

From the above quantities, we may extract some interesting asymptotic informa- 
tion, for example: 

1. The area of the invariant set in S is given by Roo. 
2. The asymptotic behavior of cn for large n; in particular, it is of interest to find 

whether cn decay exponentially or as a power law in n (see [8] for a discussion). 
3. The topological entropy, which may be estimated by the asymptotic exponential 

growth rate of L(K~), 
" 1  

A = lim ± lnL(Kn) .  
n-~OO r/, 

4. The growth rate of the averaged stretching rate 

f l =  lim l l n f l (n ) .  
n--+OO r$ 

If n is not too big, one can compute the above quantities numerically. In [1] we 
have shown that the computation of cn and R~ can be reduced to the computation of 
the escape rates, en, defined by 

e,~ = #(FnEo N Do). 

In fact, it is easy to show that for open flows 

cn = , ( o 0 ) -  n n  = c, .  (2.6) 
j = l  j = l  

The above results are exact and supply a major reduction in computation efforts of the 
transport rates. In [2] it has been proven that similar formulae hold for two dimensional 
maps which are not open maps, and for non area preserving maps. However, the de- 
pendence on numerical computation is a major obstacle for computing the escape rates 
in applications; for the two-dimensional case, the computational approach is feasible, 
but too expensive for completing, say, a bifurcation diagram describing the change in 
the behavior of the transport rates. Moreover, it is inappropriate for estimating the 
asymptotic behavior. In higher dimensions, the computational approach is bound to 
fail. The methods presented here carry over to higher dimensions in some special cases, 
in the same fashion as presented in [4]. 
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F igure  3. A type  (1, m,k ,  0) trellis. 
l=2 ,  m = k = 3 .  

In this paper we estimate the escape rates, their asymptotic behavior and the 
topological entropy for special regions in the parameter space. In these regions, similar 
analysis supplies estimates for all the other quantities mentioned above. 

c. The Geometrical  Parameters ,  Tangles and  Trellises. The quantities en, Ln 
and fl(n) depend sensitively on the manner in which the arcs Jn intersect the arcs 
Km for n,m > O. In general, given the structure of Jo N Kj, j = 1 , . . . , n ,  one can 
calculate the minimal number of homoclinic points in J0 N K~+I and their ordering 
along the stable and unstable manifolds. However, J0 A K~+I may intersect in other 
points, which we call spontaneous intersection points. One can imagine that there exist 
some parameter values for which the arcs do not develop any spontaneous intersection 
points for all j > n. For these parameter values we have some hope for estimating 
on, Ln and/~(n) accurately using information regarding the initial development of the 
manifolds. Then, we would like to argue that in a neighborhood of these parameter 
values our estimates are still reasonable. This is the basic idea behind the methods 
developed in [3]. There, we use two sets of families of initial developments, namely two 
sets of geometrical specification for the structure of Jo N Kj, j = 1, . . .  ,n, for some 
finite integer n. The first one~ due to Easton [13], has the initial structure plotted in 
figure 2; the arcs Kj intersect J0 for the first time when j = I, and J0 N K1 contains 
exactly two homoclinic points (I = 2 in figure 2). For j > l, Jo N Kj is determined 
by the rule that no spontaneous intersection points are allowed. Easton called the 
tangles which obey these minimal rules type l trellises. In [3], we developed methods 
for estimating cn, Ln and/3(n) for the type I trellises. In the next section we determine 
the regions in phase space for which (2.1) has the same initial development as a type 
l trellis, and in sections 4 we estimate the escape rates and the topological entropy in 
these regions. A tangle belonging to the second family of initial configurations, called 
the type (l,m, k,O) trellises in [3], is shown in figure 3. In the figure, l = 2, m = 3 and 
k = 3. For this family, the intersection of Kl with J0 produces four homoclinic points, 
and the tip of Kt is contained in D-re. Similarly, the tip of J - l  is contained in Ek. In 
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Figure 4. The  G e o m e t r y  of  the  sepa ra t r ix  map .  
Unperturbed separatrices, An orbit. 

figure 3 we hatched the lobes E2 and D-3. Each of these lobes contains the tip of the 
other lobe. As m, k --* cx~ the type (l, m, k, 0) trellises approach the type l trellis. This 
feature allows one to examine how the topologicM and quantitative properties change 
as the parameters of the problem vary. This investigation suggests that near the type 
l trellises the quantities en, Ln and/3(n) vary smoothly. Hence, our claim that the 
estimates should hold in a region of non vanishing area in parameter space has some 
theoretical support. 

Our first objective is to classify a given tangle and decide whether it is close to one 
of the "minimal" tangles, the type l trellises or the type (/, m, k, 0) trellises. First, we 
define the structure indices l, m, k as follows: 

1. The structure index I is given by the minimal value of j for which Kj N Jo ~ O. 
2. The structure index m is given by the minimal value of j for which Cl n J-j ~ O, 

where Ct denotes the tip of the arc Kz, emanating from J0. 
3. The structure index k is given by the minimal value of j for which K j ~  B-l  ~ O, 

where B - l  denotes the tip of the arc J-l, emanating from K-1. 
By definition, the type 1 trellises have a structure index l and the type (1, m, k, 0) 

trellises have structure indices I, m, k respectively. In addition, the critical intersection 
set of the type l trellis, J0 N Kl, contains exactly two homoclinic points. Similarly, the 
critical intersection sets Jo A Kl, Cl N J-m and Kk N B- l  of the type (1, m, k, 0) trellis 
contains exactly four, two and two homoclinic points respectively. We use the properties 
of the trellises to approximate the properties of tangles which have the same structure 
indices and the same number of homoclinic points in the critical intersection sets. In 
the next section we use the Whisker map to estimate the boundaries of the regions in 
parameter space in which the tangles satisfy these conditions. 

Section 3. The Structure Indices. 

In this section we define and compute the Whisker map for (2.1). Then we use it 
to construct a bifurcation diagram describing the dependence of the structure indices 
on s and c~. 

a. The Whisker Map. We define the separatrix map, W, as the return map of 

the energy and time variables (hn, Tn) to the crossections Eh and ~r  respectively (see 
figure 4): 
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w :(hn, ~n) -~ (hn+l, ~+1)  
q (~ )  e r~ (3.1) 
h~ = g~(q( t* ) , t* ) ,  q(t*) c r~h, ~. < t* < ~ n + l ,  

where q(t) is a solution to Eq. (1.1). In the neighborhood of the separatrix the crossec- 
tions ~h and E~ are transverse to the unperturbed trajectories. Therefore, for ~ suffi- 
ciently small, the separatrix map is well defined there. With no loss of generality, we 
assume that  h ~ 1 near the separatrix. The Whisker map is defined to be the leading 
order approximation in s and h to the separatrix map. Chirikov [10] realized that the 
Whisker map can be calculated explicitly as 

hn+l = hn Jr £M(Tn) (3.2) 

Tn+l ---= Tn + T(hn+l) 

where M(t) is the Melnikov function and T(h) is the period of the unperturbed orbit 
with energy h. In section 9 of [3], we derive the Whisker map from the separatrix map 
and estimate the magnitude of the next order terms, namely the error committed by 
replacing (3.1) by (3.2). 

For our example, the Melnikov function is given by Eq. (2.3). The period of the 
unperturbed periodic orbits of (2.1), T(ho), is given by: 

jfb a dq 2V~ K(~ b/b-L-~) (3.3a) 
T(h°) = x/r6 i ( q _ l ) 2 ( q + ½ ) + 3 h o  - ~ V a - c  

where K(k) is the complete elliptic integral of the first kind, 

1 
( a  - -  q)(b - q)(q - c) --- (q - 1)2(q + ~) + 3h0, a > b > c, (3.3b) 

and 
1 

H~(x,y,t)  = -~ + h~(x,y,t). (3.3c). 

It follows from Eq. (2.1) that  for the unperturbed problem ho(qo(t)) = 0, hence near 
the separatrix Ih01 ~ 1. Expanding (3.3) in the small parameter h0, one obtains (with 
some assistance from Mathematica): 

ln(_-~0)(1 + O(~h-~0~)). (3.4) T(ho) 

Therefore, the Whisker map for (2.1) is given by: 

h~+, = hn + ~c (~)  s i n ( ~ . )  

~ n + l  = ~ + ln( 72 ), (3.5) 
-hn+l 

where C(w) is defined by Eq. (2.4) and is plotted in figure 1. 
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b. E s t i m a t i n g  the Structure Indices.  There is a simple and elegant correspondence 
between the value of the variables (h, T) of the separatrix map and the geometry of the 
manifolds; since orbits on (or above) S[po,p] approach p (resp. escape to infinity) their 
return time is not defined. Hence, if the initial energy and phase, (h0, ~'0), of an orbit 
are such that hi = 0 (resp. ha > 0) then for t > T0 this orbit belongs to S[P0,p] 
(resp. escapes). More generally, orbits inside S have h < 0 and orbits outside S have 
h > 0. Escande [11] noticed this property first, and suggested to use the Whisker map 
for deriving a Markov model for estimating the transport rates. Knobloch and Weiss [7] 
replaced the dynamics of the continuous system (1.1) by the Whisker map and computed 
numerically the transport rates due to modulated traveling waves. In [3] we argued that 
by replacing the exact separatrix map by the Whisker map one introduces error terms 
which grow exponentially in time. Moreover, this strategy leads to yet another numerical 
study, involving the Whisker map instead of the flow. Therefore, we determine the 
geometrical parameters of the Poinear@ map using the Whisker map for a finite number 
of iterations, on known orbits for which the error term may be estimated. Then, we 
use the approximate geometrical structure to approximate the escape rates, manifold 
length, etc. These estimates are essentially analytical, as opposed to previous studies of 
transport rates. On the other hand, it is unclear how to estimate the error involved in 
this topological approximation. For now, we compute the geometrical parameters using 
the Whisker map (3.5), leaving the calculation of the error terms to future work. 

The s t r u c t u r e  index h I is defined to be the minimal integer j for which there exists 
an initial condition (h0, To) E Kj N Y0. We find the algebraic equations (h0, To) satisfy, 
and determine l as the minimal value for which these equations have solutions. 

J0 is characterized by initial conditions which have just past the Er crossection in 
the last period, therefore 0 _~ To _~ T^(where T = 2~r/w). The previous position, (t < T0) 
of such initial conditions is outside S, so h0 > 0, see figure 2. Finally, their future is to 
asymptote p, so hi = 0. We summarize these observation as: 

Jo = {(ho,To) I ho < 0, ha = 0, 0 _< To _< T} (3.6) 

and similarly we find 

Ko = {(ho,To) ] h0 = 0, hi < 0, 0 < Vo < T}. (3.7) 

Let (ho,vo) E K0, namely the trajectory r(t), with initial energy ho = 0, passed the 
crossection ET at To, and is in K0 at some time t, 0 < To < t < T, so ha < 0. We 
ask whether there exists (h0, To) for which Fir(t) E Jo (then Fir(t) E Jo N Kj and the 
latter set is nonempty). If Fir(t) E Jo, then there exists an integer i _> 1 such that 
To + (j - 1)T < vi < 7-0 + j T  and hi+l = 0, namely r(t) is a homoclinic orbit which 
encircles the origin i times. We conjecture that for e sufficiently small and w bounded 
away from zero the minimal j is determined by orbits with i = 1. Summarizing the 
above arguments, we assert that l is given by the minimal integer j for which the 
equations 

h 0 = 0 ,  h i < 0 ,  he=O, O<_To <_T, ( j + 5 ( w ) - l ) T < v l - T o  <(j+5(~o))T (3.8) 



60 

0.5 

0.4 

0.3 

0.2 

0.1 

" ; I"lR/ ,,7 ,,J ,'7 
• ; ; k J 2 '  , ' /  ,'?' .1 " 
__2_Z ' 

: 

0 1 2 3 4 

Figure 5. The Bifurcation Curves of Eq. (3.10) 
- -  e~(w),-  - - ,  ¢~(~o). 1 values are indicated to the left of the curves. 

have a solution (h0, r0), where 

1 if w <  1; 
6 ( w ) =  0 if w > l .  

Using (3.2), we find that  (3.8) amounts  to finding a solution 0 < T0 _< r to: 

M(To) = --M(To + T(6M(To)))  , (j + 6(w) - 1)T < T(eM(To)) <_ (j + 5(w))T. (3.9) 

Since M(t )  is a multivalued function of t, we obtain two branches of solutions, which 
depend on the sign of C(w): 

sin(~ov0) = 72 1 eC(w) e x p ( - ( j  + b ( w ) -  ~)T) '  ~'0 • I~ (3.10a) 

o r :  

where 

72 
sin(WT0) : )teC'w~ exp(2r0 - (j + 26(w))T), TO e I~, (3.10b) 

{ [=/=,2~/=] for = < 1; 
X~ = [0, 7r/w] for w > 1. 

We equate the r.h.s, of (3.10a) to one, and find the bifurcation curves for (3.10a): 

72 - ( 2 l  + 2b(co) - 1)~r). (3.11) 
d - I c ( ~ ) l  exp(  
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1 
k 

c. 

F i g u r e  6. T h e  g e o m e t r i c a l  i n t e r p r e t a t i o n  o f  t h e  b i f u r c a t i o n  c u r v e s  e~,e~. 

For e < c~, (3.10a) has no solutions, and for ¢ >_ e? (3.103) has two solutions, r~(1) <_ 
%4(0. Some of the bifurcation curves e~(~o) are plotted in figure 5 (the dashed lines). 
We obtain the bifurcation curves of (3.10b) by requiring that the function 

72 
f (ro)  =-- sin(wro) + ~ exp(2ro - 2(1 + 25(w))~r/w) 

~ )  

will have a quadratic zero in the appropriate interval of r0: 

f ( t )  = O, df(t) _ O, t E L,, 
dt 

and obtain 

i ~° 2 

4 = f 172 1 -a- exp(-2(Z + arctan( )), (3.12) 

where arc tan(~)  is chosen to belong to I~,. We plot the bifurcation curves e~(w) in 
figure 5 (the solid lines). Clearly, e~(w) < e~(w) for all w. For e < e~ (3.10b) have 
no solutions, whereas for c > e~ it has two solutions, denoted by T0a(l) _< r~(1). At 

1 arctan(~).  At the bifurcation point the bifurcation point e = e~, rd(I) = T03(1) = 
s = sT, Eq. (3.10) has a cubic zero (located at 3rc/2~o for w < 1 and at rc/w when 
w > 1). For e > e~ the four solutions to (3.10) are ordered by their initial crossing times 
r~o(l) <_ r~+l(1), i = 1, 2, 3. We note the peculiar property, that  to leading order in e, 
(3.9) has either one, two or four distinct solutions. 

As one increases e along the line ABC in figure 5, the number of solutions to (3.10) 
changes, and therefore the structure of the manifolds of (2.1) changes as shown in figure 
6; For e~ < e < e b (point A in figure 5), (3.10) has no solutions with j = 2, and four 
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solutions with j = 3. Therefore, we estimate the structure index l of (2.1) by 3. For 
this value of ~, the tip of the lobe E2 (the hatched lobe in figure 6) does not reach the 
segment J0 and K2 N J0 = 0 (figure 6.A). Increasing c so that ¢b < ¢ < ~ (point B 
in figure 5), (3.10) has exactly two solutions with j = 2, and we estimate the structure 
index I of (2.1) to be 2. Here, the tip of E2 crosses J0, two homoclinic points in K2 N 3"0 
are created (figure 6.B), and the tangle has the same initial development as a type 2 
trellis. A further increase in s (point C in figure 5) results in four solutions to (3.10) 
with j = 2. Then, the tip of E2 stretches and exits Do, giving rise to four homoclinic 
orbits in K2 N J0 (figure 6.C). In this region we expect to find subregions in which the 
tangles have the same initial developments as that of the type (2, m, k, 0) trellises. 

To summarize, in the regions of figure 5 which are bounded by a dashed line from 
the left and a solid line from the right, the lobe El intersects the lobe Do at exactly 
two homoclinic points. In these regions we approximate the topological structure of 
the manifolds by the simplest construction, the type I trellises. When 1 = 1 we have 
some theoretical justification to this procedure; the horseshoe map, which is structurally 
stable, defines a type 1 trellis. Hence, we expect to find an open interval, contained 
in [6~,~], for which the map F is topologically conjugate to the horseshoe map and 
its manifolds form a type 1 trellis. The hope is that even if the other trellises are not 
structurally stable, the properties of nearby tangles are close to theirs. 

In the regions where the initial development of the tangles differs from that of a 
type I trellis, we need information regarding the fate of the tip of El. This information 
is supplied by calculating the structure indices m, k. For (2.1), the symmetry of the 
Poincar6 map implies that m = k. 

Th e  s t r u c t u r e  index  m: Following the same logic that led to (3.8), we find that an 
orbit contMned in Kl N J - j  must satisfy: 

h 0 = 0 ,  h i < 0 ,  h 2 < 0 ,  h 3 = 0 ,  0_<T0_<T, 

(1 -~- 5 (W)  --  1)T ~ T1 - -  ~'0 ~ ( l  -~- 5 ( c o ) ) T ,  (3.13a) 

(j + 5(w) - 1)T <_ T~ - "rl < (j + 5(w))T. 

In addition, we demand the orbit to belong to the tip of Ks, therefore 

< To _< To (1) (3 13 ) 

where T2(1), Tg(l) are the intermediate solutions of (3.9) with j = I. 
m is given by the minimal value of j for which there exists an initial condition 

(h0, TO) which solves (3.13). These conditions are meaningful only in the regions where 
the tip is well defined namely for s~ < e. Using (3.2), we find that (3.13) amounts to 
finding a solution To to: 

"rl = TO + T(sM(To)) 

(3.14a) 
o = M(To) + M(T ) + M(T ) 

(j + 5(w) - 1)T < T(¢M(To) + gM(T1)) ~ (j + 5(w))T, 
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with 

~ ( 0  -< T0 < ~0~(0. (3.14b) 

Eq. (3.14) consti tute a nonlinear equation for T0 which can be solved numerically using 
a Newton method. Close to the bifurcation curve ¢ = ~ ,  we can estimate the solutions 
to (3.14) and exert their dependence on m; near ~ = ~ the tip of Kt is small, therefore 
the distance between the zeroes v02(1) and T0~(1) is small. We define O by 

= + o, (3.15) 

and assume ~ << 1. Linearizing (3.14) about  7-o 2 -= T2(/), and using (3.9), we find: 

OK2(T20 ) = -M('r~ + T(eM(T~ ) ) + OKl (r2o ) + T(eOK2(7~) ) ) 

(j + 6(w) - 1)T < T(¢OK2(T~)) < (j + 6(w))T 
d 

K1 (t) = 1 + -~T(eM(t)) 

K 2 ( t ) -  dM(s) dM(s) 
ds t + Kl(t)  ds t+T(~M(t))" 

Since M is multivalued, there are two branches of solutions to (3.16) 

0 = / ( 3  exp (a±O - jT)  
o r :  

t? : K3 exp (a~O - j T  + ~T), 

where the upper  sign corresponds to w < 1 and the lower sign to a; > 1, and 

72 
Bl-- C(w) e x p ( ( - l - 6 ( w )  + )T) 

(3.16) 

(3.17a) 

( ]72 2 exp(To 2 - (l + 36(w) - I)T) (3.17b) 
/(3 

A similar calculation for t : %3(0 - O', results in two equations for @t of the same form 
as (3.17a), with the coefficients Bl, K3 and a ±  replaced by 

3 72 
Bt(~-° ) - C(w) e x p ( - ( l  + 25(w))T + 2T0 3) 

72 exp(-   + (1 - 

- -  ~___ 2 (3.17c) 

G [ ~ - - - I = F - , , _  -B~ 2 -  
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respectively. Since 0 << 1, the solutions to (3.17a) are given approximately by: 

K3 
01 = 

exp(jT)  - a±K3 

/;3 
0 2 

exp((j T 7)T) - a~:K3 

( 3 . 1 s )  

with similar expressions for 0 t. By construction, the solutions to (3.17) are physical 
only when they are positive and small. Therefore, we estimate the bifurcation curves of 
(3.14) by counting the number of solutions which are physical and which do not overlap. 
For each rn we obtain two approximate bifurcation curves e~,m(w ) < e~,m(CO), where for 

e < e~,m(C0 ) (3.14) has no solutions for j = m, for ~,rn(W) ,Q c <~ C~,m(W ) (3.14) has 
exactly two solutions with j = m, and for e~,m(CO ) < e (3.14) has at least four solutions 

for j = m. In figure 7 we plot the approximate bifurcation curves e~,,~(w), e~,m(aJ ) for 
w > 1. For m > 4 these curves are indistinguishable from the e~ curve. In the small 
regions bounded between the two bifurcation curves of the structure index m, we expect 
to find behavior similar to the (I, m, m, 0) type trellises. We note that  there is a series of 
approximations involved in getting these curves and a more thorough analysis is needed 
to justify these approximations. 

S e c t i o n  4. T h e  T y p e - l  Trel l ises.  

In section 3, we found regions in parameter space in which the tangles had the same 
initial development as a type-/ trel l is .  In the first part of this section we summarize 
some of the methods developed in [3] for estimating the development of a type-/trell is .  
Then, we use this construction to estimate the exponential growth rate of the segments 
Kn. Finally, we estimate the escape rates for these tangles using the Whisker map and 
the geometrical properties of the trellises. 
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Figure  8. The  s ta tes  of  a type  2 trellis. 
The hatched strips are the members of the indicated states. 

a. The  S t r u c t u r e  of  a Type- /  Trellis. The assumption that a type-/trellis does 
not develop any spontaneous homoclinic points enables one to construct a one sided 
symbolic dynamics which describes the dynamics of the lobes. In general, the jth image 
of E0 is elongate and folded many times in S. We divide this tangled lobe to several 
types of strips, which we call states. These states obey simple dynamical rules under the 
Poincar@ map F. We draw typical members of the various states in figure 8 and define 
them as follows: Let S = S - E0. The strips of Fn(Eo) N S which have one boundary 
belonging to J0 and another belonging to Jj, j ~_ l, belong to the state hi. The strips 
of Fn(Eo) N S with one boundary belonging to J-k and the other belonging to Jt-k or 
Jl-k+l,  where 1 < k < I - 1, belong to the state hk+l. The strips of F'~(Eo) A S which 
have one boundary belonging to J0 and another belonging to J1, belong to the state 
ht+l. Finally, the arcs of Fn(Eo) N F-k(Do), k = 0 , . . . , I  - 1 belong, respectively, to 
the state gk, k = 1,. . . ' ,  I. The arcs of Fn(Eo) A FJ(Do), j _~ 1, belong to the state go. 

It is easy to verify that strips belonging to the above states obey the following 
dynamics: 

; . . .  ; 

The dynamics of the states hi determines the folding of curves inside S. The states gi 
are "passive" states, and are used for the estimates of the escape rates (see part c of 
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this section). From (4.1) we construct the (I + 1) x 

1 0 0 . . .  
1 0 0 . . .  
0 1 0 . . .  

Tl= 0 0 1 . . .  
: : : .. 

0 0 0 . . .  
\ 0  0 0 . . .  

(I + I) transfer matrix, Tz: 

0 0 1~ 
0 0 0 
0 0 0 
0 0 0 
: : : 

1 0 0 
0 2 0 j  

The number  of strips of Fn(Eo) (n > 0) belonging to a state hi is given by the i th 
component  of the vector ( 0 , . . . ,  0, 1, 0)Tl n-1. This observation enables us to estimate 
L(Kn),  the length of the boundary  of the lobe F"(Eo). The exponential growth rate 
of these quantities is given by log ),T,, where )~Tz denotes the modulus of the the largest 
root of the characteristic polynomial of Tl, 

Pl()~) = Al+l _ ~l _ 2. 

When I = 1, the matrix Tl is replaced by the matrix 

(4.2) 

and ~T1 = 2. In general, AT~ is monotonically decreasing with I. 

b.  T h e  E l o n g a t i o n  R a t e  o f  T h e  U n s t a b l e  M a n i f o l d .  The bifurcation diagrams 
of figure 5 and figure 7 may be considered as an approximate diagram of the level sets 
of the topological entropy; if the type-/ trel l ises are similar to the tangles with the same 
initial development,  then, for ¢~ < ~ < s~, the exponential growth rate of line elements 
in phase space is given approximately by log ),T~. 

In [3], we constructed the symbolic dynamics for a type (l, m, k, 0) trellis as well, 
and found that  the largest eigenvalue of the matrix Tl,m,k,O is given approximately, for 
m, k > l, by: 

~.~.~.0 ~ ~T~ + c, exp{ -b , (m + k)} (4.3) 

where cl and bz are computed in [3]. 
These findings, together with the bifurcation diagrmns of figures 5 and 7, supply an 

est imate for the change in the topological entropy as the parameters (¢, w) are varied. 
We observe that  the topological entropy of the type (l, m, k, 0) trellises approaches that  
of a type I trellis exponentially in m. Using (3.18), we find that  the topological entropy 
varies as a power law in s near the bifurcation curve s~, with the critical index blw/~r. 
This is a rough estimate,  and a more thorough analysis is underway. We need to account 
for the ~ dependence of the coefficients in Eq. (3.17) and we need to estimate the 
error terms resulting from approximating (3.14) by (3.17) and from using the Whisker 
map rather  then the separatrix map. Furthermore, our estimates are based upon the 
geometry of the trellises. It is possible that  the actual dependence of the topological 
entropy on ~ is not smooth, and that  the power law dependence is realized on a measure 
zero set of parameters.  A careful numerical s tudy is needed to resolve this question. 
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c. E s t i m a t e  o f  t h e  E s c a p e  R a t e s .  By assigning weights to the dynamics described in 
(4.1), we est imate the area which escapes the region S; By definition, strips belonging 
to the state  gl have just escaped S . - I n  fact, ca is equal to the area of the strips of 
F n ( E o )  which belong to gl. Therefore, once we determine the weights and the initial 
distr ibution of F ( E o )  between the states, we can construct a weighted transit ion matr ix  
similar to Tz which approximates the action of the flow on the states. By construction, 
most of the weights in (4.1) are simply one. There are three nontrivial ( 5  0 or 1) 
weights, denoted by 81,82 and sa. 81 (resp. 82) measures the fraction of the area of a 
strip belonging to the state hi which maps to a strip belonging to the state hi (resp. 
hz+l). Similarly, 83 measures the fraction of a strip belonging to hl+l which ends up as 
a strip belonging to the state hz. The weighted transition matr ix  is of the form: 

go • • • gl 

The matr ix  Wl realizes the dynamics 

f 8 1  

1 
0 

W l =  0 0 

0 0 
0 0 

The  matr ix  R administrates the transfer 

hi . . .  hl+l 

LI+I 0 
R w~ 

on the hi states: 

0 0 . . .  0 0 
0 0 . . .  0 0 
1 0 . . .  0 0 

1 . . .  0 0 
: " . .  : : 

0 . . .  1 0 
0 . . .  0 83 

. (4.4) 

82 

0 
0 
0 

0 
0 

of areas from the hi states to the gi states: 

R(1,2)-= 1 - 8 1 -  82, R(I+ 1,I+ 1)-= 1 

Finally, L~ is an n × n transfer matr ix  
states: 

f l  0 0 . . .  

1 0 0 . . .  
0 1 0 . . .  

L ~ =  0 0 1 . . .  
: : : " . .  

0 0 0 . . .  
0 0 0 . . .  

- $ 3 ,  R ( i , j )  = 0 otherwise. 

which reflects the trivial dynamics of the gi 

0 0 0 ~  
0 0 0 
0 0 0 
0 0 0 

I 0 0 
0 I Oj 

(4.5) 

The lobe F ( E o )  has, by construction, one part  which belongs to an hi state and another  
small part  which belongs to a gl state. The area of this small port ion is exactly et. 
Therefor% once #(E0), ez and the weights sl,s2 and ~3 are known, we can estimate cn 
as the second component  of the vector vn: 

en ~ vn(2) -= v l M n - l ( 2 ) ,  (4.6) 
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w h e r e  v 1 is a vector with (2l + 2) components,  two of which are nonvanishing: 

vl(l  + 1) = el, and vl(gl ~- 1) = ~(E0) - el ~ w. 

From the form of the matrix Ml, it is easy to verify that  the weights si can be est imated 
by: 

S 1 ,~ el+2 e l + l  el+2 e 2 / + l -  8~elq_ 1 
- - ,  s2 ~ 1 , s3 ~ 1 - (4.7). 
el+l w el+l ws2 

Therefore, given ej, j = l, l + 1, 1 + 2, 2I + 1 and #(E0) we can approximate the escape 
rates for all n. In the next section we use the Whisker map to evaluate these quantities. 

d.  E s t i m a t e s  o f  t h e  In i t i a l  E s c a p e  R a t e s .  Since the variables (h, ~-) of the Whisker 
map are canonical variables, an area element of the phase space is given by dhdT. We 
estimate #(E0) and the ej's by determining the values of h~ and Tn-1 on the boundaries 
of the sets they measure and integrating the area bounded by these values. Here (hn, Tn) 
is the n th image of (h0, T0) under the Whisker map, (3.2). First, we evaluate #(E0); E0 is 
bounded by the segment of the stable manifold/1  = {(h~'(v0), T0)]h~(T0) = 0, v0 E I~} 
and the a r c /2  = {(h~(wo),To)lhlo(To) = 0, To e I~}. Denoting the endpoints of I,~ by to 
and t~, we find: 

#(Eo) ,.~ - h~(To)dTo = - ¢  M(vo)dvo - (4.8). 
o d t o  L~2 

Eq. (4.8) can be derived directly, using the geometrical interpretation of the Melnikov 
function [1]. It coincides with the first order approximation in ¢ to the difference in 
action of the homoelinic endpoints (0, to) and (0, h )  [8], [14], [15]. 

To est imate el = #(Fl(Eo) N Do), we notice that  the set Fl(Eo) N Do is enclosed 
by the a r c / 1  = {(h~(71),T1)lh~(To) = 0, Tl(l) < To _< v3(/)} and the segment /2 = 
{(hI2(7~), ~'1)1hl2(71) = 0, T01(l) _< 7"0 _< Ton(l)}, where 70~(l) and T03(I) are the solutions of 
(3.lOb) with j =  I. Since 7~(I) < r~(I), we find 

F et ~ h~(T1)dT1 = e (M(T1) + M(To))dT1 

~: f~X M'O-o) = e [j~3~ M(vl)dT1 + ¢ 3 M0-°)(1 M(To) )dvo (4.9) 

i /f I "; M(v l )d r l  - e M(ro)dro + o 
= ea~_~ o ~ 

where we used the shorthand notation T j -- TJ(l). Note that  (4.9) contains expressions 
which are simple functions of the Melnikov function, evaluated at the homoclinic points. 
We believe that  as in the case of (4.8), (4.9) supplies the leading order approximation 
in ~ to the exact formula, given in terms of the action of the homoclinic points ~-11 and 
~-13. We use Eqs. (2.3), (3.9) and (3.10) to evaluate (4.9) for our example and obtain 

et ~ 5C(w)(1  cos(wt) + sin(wt)) r!. (4.10) 
r3 
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Figure 9. T h e  N o r m a l i z e d  E s c a p e  R a t e s  for  w = 1.2. 

In a similar fashion we calculate ej = #(FJEo f3 Do), l < j < 2I. The arches 
FJEo f3 Do are bounded by the arcs I1 = {(h~(T1),T1)I h~(TO) = O, ~.l(j) < TO <_ 
T~(j)),  /2 = {(h~(T1),T1)] hlo(TO) = 0, T~(j) <_ 70 <_ ~_3(j)} and the segments /3 = 
{(O, TI),T:(j) < T~ < TI(j)},  Ia = {(0,~-l) ,r](j)  < 7-1 _~ r3(j)},  where rJ(j) and T3(j) 
are the solutions of (3.105) and T~(j) and To~(j) are the solutions of (3.10a). Their 
images, r~, obey T2(j) < i f ( j )  < r~(j) < T~(j). Therefore, 

l l ej ~,~ h~(T1)dT1- hl(T1)dT1 

_ ~ ~¢ ~ ~°~ (4.11) r~M(rl)dT1 f M(T1)dTI+C M(~-o)d,o f M(To)dTo --c - c  - c  
J ~ 3 J T3 

4 

where ~.k = Tk(j). Using Eqs. (2.3), (3.9) and (3.10), we find that  for our example 

ci ~ - c C ( w ) (  lcos(wt)  +sin(wt)) ~o,~3 -144exp ( ( - j - 5 (oJ )  + ~)T), (4.12) 

where we use the notation f(t)la,b = f(a) + f(b). 
Finally, we estimate e21+l = # ( F  21+l(E0)~D0). The set F 21+1 (E0)ND0 is composed 

of two arches, denoted by A ~ and A t. The area of the arch A ~ is approximated by (4.12), 
with j = 2I + 1. Orbits belonging to the lower arch encircled the origin twice before 
escaping. Let t~ be the four solutions to (3.14a) with j = l and the I in (3.14b) replaced 
by 21 + 1. It follows from the geometry of the manifolds that  the solutions t~ obey 

v3(l + 1) < t I < t 2 < T01(I), and r3(l ) < t03 < t 4 < T3(1 + 1). (4.13) 
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Figure  10. T h e  A s y m p t o t i c  decay  R a t e  of  The  Escape  R a t e s  for w = 1.2. 

and that t~ < t21 < t 2 < t~. h3 e At is bounded by the arcs/1 = {(h~(t2),t2)l h~(to) = 
O, t30 <_ to <_ t 4} and I2 = {(h~3(t2),t2)l do(to) = 0, to ~ _< to _< t 2} and the segments on 
which h3 = 0 and t2 varies between t] to t 3 and between t~ to t~. Therefore, 

Using (3.2) we find 

, , ( A , )  - h~ (t2)dt2 ht3 (t2)dt2 (4.14). 
Jq  Jt~ 

h~(t2)dt2 ..~ ¢ (M(t2) + M(t l )  + M(to))dt2 
Jt~ (4.15) 

t 4 t" 2 F ' ~  

=  (2M(to) - M ( t l )  

4 3 1 2 The integral of ht3 is of the same form, with the end points ti, t i replaced by ti, ti 
respectively. 

To summarize, we find simple expressions for estimating #(E0) and the ej's, for 
j < 21 + 1, in terms of the solutions to Eqs. (3.9) mad (3.14), which can be found 
numerically. In figure 9 we present the computations of these quantities, normalized by 
#(E0), for w = 1.2 and c b < c < c~. This computation takes a few seconds on a Sparc 
workstation. The contribution of e2t+l (e5 in the figure), is quite significant, and causes 
a long transient behavior of the approximate e, 's, given by Eq. (4.6). 

For large n, the approximate en's decay exponentially as (~t) n, where ~z is the 
largest root of: 

( 1 + : l  __ . ~ 1 ¢ I  __ 8 2 3 3  = 0 .  (4.16) 

Using (4.7-4.16), we calculate @(¢,w) for w = 1.2 and ¢~ < ¢ < ¢~. The results are 
presented in figure 10. 
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Section 5. Summary and Conclusions. 

We applied some of the methods developed in [3] to the phase space flow of a 
particle in a cubic potential, perturbed by a temporally periodic forcing. In section 
2 we defined the structure indices, which classify the flows by the structure of their 
homoclinic tangles. In section 3 we used the Whisker map to compute these indices and 
in section 4 we estimated the escape rates using the Whisker map and the approximate 
structure of the manifolds. 

We have demonstrated that  the methods developed in [3] can be used to obtain 
a global description of the changes in the properties of the flow as the parameters 
vary. Moreover, we found that  these methods are easy to apply and require negligible 
amount  of numerical computations and programming. However, we have not addressed 
the question of accuracy of the methods in this paper. The use of the Whisker map 
introduces errors which can be estimated analytically. Their impact on our calculations 
must be examined carefully. The topological approximations regarding the structure of 
the manifolds is a more delicate issue. We do not foresee a rigorous way to justify this 
approximation, and hope to supply numerical evidence which will support our results. A 
possible theoretical resolution to this problem is to find structurally stable maps which 
at tain a type l trellis (e.g. the horseshoe map for the l = 1 case). We believe that  even 
if such maps do not exist, the results may be accurate in neighborhoods of the type I 
trellises, up to a measure zero set of parameter values. 

The preliminary results for the specific example of the flow (2.1), are summarized 
by figures 5, 7 and 10; in the first two figures we find the approximate bifurcation curves 
for the structure indices, which supply approximate level sets for the topological entropy 
of the flow. In the last figure we plot the asymptotic decay rate of the escape rates as 
a function of c for a fixed value of w. The curve in not monotonic in 6, suggesting the 
surprising result that  for some parameter values an increase in ¢ causes a decrease in 
the asymptotic escape rates. 

Our results are valid for ~ sufficiently small, and for finite values of w which are 
bounded away from zero and one; for w = 0, 1 or infinity the Melnikov function vanishes 
identically, and we cannot conclude what is the structure of the homoclinic tangle using 
the Whisker map approximation. The limit w ~ 0 is the adiabatic limit in which the 
homoclinic structure is different then the one considered in this paper [16]. Further 
analysis is required to conclude whether the ideas presented here are of any practical 
value in this case. In the limit w ~ co we expect to see exponentially small separation of 
the manifolds [17]. Formally, this limit corresponds to 1 ~ oo in our analysis. However, 
the regular perturbation theory which we use is not valid in this limit. A generalization 
of the results to this case will probably require an extensive analytical effort. As for the 
region w ~ 1, the structure of the tangle is determined by the next nonvanishing term 
in the expansion series of the distance function in ¢. The analysis presented here can 
be easily generalized to this case by replacing the Melnikov function by the appropriate 
higher order term. However, the calculation of the higher order terms is usually too 
hard and therefore impractical. 
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Abstract : The qualitative features of large scale structures in the simplest case of 

kinetic plasma turbulence, the electron beam-plasma instability, are described. 

The corresponding theory is still unsatisfactory, and even paradoxical. The 

weaknesses of the traditional approach of microscopic plasma theory are 

analysed. A new approach is introduced,  resting on a classical mechanics 

technique. It starts from a N-body description of the plasma, goes through the 

derivation of a Hamiltonian describing the self-consistent evolution of Langmuir 

waves and near-resonant particles, and provides a derivation of the quasilinear 

equations where spontaneous emission effects are included. This derivation 

makes clear the physics of wave-particle interaction, and answers many question 

raised by the Vlasovian approach. In particular, Landau damping turns out to be 

a non-resonant nonlinear phenomenon of synchronization of particles with a 

wave. The regime where chaos is dominant  is still unexplained analytically, but 

the results of a numerical simulation starting from the self-consistent equations 

agree with experiments. This new technique should find applications in other 

fields than plasma physics. 
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1. INTRODUCTION 

When a weak electron beam is injected into a thermal plasma, electrostatic 

modes at the plasma frequency (Langmuir waves) are destabilized, and grow 

starting from the entrance point of the beam till the instability saturates. This 

saturation occurs by two possible mechanisms [1] depending on the beam 

temperature (its velocity spread) : 

- for a cold beam, beam particles are trapped in the most unstable mode, which 

yields a regular spatial modulation of the mode amplitude (figure 1), 

- for a warm beam, beam particles are diffusively slowed down by a broad 

spectrum of modes, which yields a chaotic spatial modulation of the modes 

amplitudes (figure 2). 

Both cases correspond to the formation of spatial structures in the plasma. In a 

true experiment a Langmuir mode is characterized by its frequency co. 

Theorists prefer the initial condition problem where a spatially uniform 

beam is initially present in the plasma. Then similar structures evolve in time, 

and a Langmuir mode is defined through its wave number k. Temporal and 

spatial scales are related through the group velocity of the mode of interest. The 
typical behaviour of the mode's field amplitude Era or E k is displayed in figures 1 

and 2. 

Ek,o) 

t,x 

Figure 1. Spatial or temporal evolution of the electric field of one Langmuir 

mode in the cold beam-plasma instability. 
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Ek,co 

t,x 

Figure 2. Spatial or temporal evolution of the electric field of one Langmuir 

mode in the warm beam-plasma instability. 

Many quest ions are left unanswered  in the theory of this basic 

phenomenon  of kinetic plasma turbulence. In the beginning of the sixties the 

warm beam case was given a theoretical description in a so-called quasilinear 

theory [2] which makes correct predictions even though its assumptions are 

proved to be wrong both theoretically and experimentally [3]. As a more recent 

theory  wi th  better  assumpt ions  [4] makes predic t ions  which  are not  

experimentally verified [3], theorists are left with a paradox ! 

The saturation of the cold beam case has not yet received a fully analytical 

t reatment  [5,6]. However ,  an interesting set of equations (self-consistent 
equations) was derived, which describes the self-consistent coupling of Langmuir 

modes with resonant  particles, and made possible a convincing computer  

simulation of the saturation [5]. 

The above paradox was originally tackled from a Vlasovian point of view. 

This motivated the Turbulence Plasma team, created in Marseille in 1988, into 

developing a new approach through the self-consistent equations where particles 

and modes played a symmetrical role, and where most of the irrelevant degrees 

of f reedom of the full Vlasovian description were removed.  This approach 

rapidly gave hints that it could tell more than the Vlasovian one about 

phenomena  like Landau damping  (the damping  of waves by near-resonant 
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particles). This, in turn, made  desirable a more basic derivation of the self- 

consistent equations. 

This paper reports on the present state of development  of the theory, and 

shows several directions for future investigation it opens, in particular in other 

fields than p lasma physics. The beam-plasma system is considered as a 

mechanical  N-body object. Through simple physically intuit ive steps, the 

properties of Langmuir  waves for one realization of the plasma are derived. 

Averaging over realizations of the plasma yields the usual quasilinear equations 

where the effect of spontaneous emission of the particles is included. As yet, the 

range of validity of these equations is not improved with respect to the original 

derivations, but their physical content becomes transparent. In particular Landau 

damping  turns out  to be a nonlinear non-resonant  effect, a fact completely 

obscured by the Vlasovian approach ! Furthermore, explaining the quasilinear 

paradox is now clearly connected with the justification of the quasilinear 

computat ion of the diffusion coefficient in the much  simpler (but far from 

trivial !) dynamics of one electron in a prescribed set of Langmuir  waves. A 

numerical simulation of the self-consistent equations yields results in agreement 

with the experiment of reference 3. 

We consider here plasma turbulence from a kinetic point  of view. This 

means we deal with particles, and we do not use a cont inuum mechanics 

approach. Collisions are considered as negligible, but this does not preclude the 

existence of dissipat ive-l ike effects (Landau damping) .  The p lasma is 

unmagnet ized,  it is considered as one-dimensional,  and the ions are a static 

neutral izing background (this last assumption corresponds to the so-called 

regime of weak turbulence). The large scales we consider are those larger than the 
Debye screening length KD, and are related to electrostatic electron waves (the 

Langmuir waves) which are coherent plasmon states. 

Since this paper is in tended for a broad audience, section 2 yields a 

simplified presentation of the features of the beam-plasma instability, and section 

3 shows the outline of the theoretical results available till 1988. Section 4 presents 

the main stream of the new mechanical approach. For pedagogical reasons, we 

use Newton 's  law of mechanics and the Coulomb force, instead of more 

sophisticated (and elegant) Lagrangian or Hamiltonian formalisms. This way, the 

most sophisticated tool we use is the Fourier series. 
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2. PICTURES OF THE BEAM-PLASMA INSTABILITY 

For a thermal plasma with electron thermal velocity V T (figure 3) and 

(fop2=ne2/(Eom), with n the electron density), the Langmuir plasma frequency fOp 

waves have the Bohm-Gross dispersion relation shown in figure 4. This picture 

should be completed with a curve symmetrical with respect to the k axis, which 

corresponds to modes propagating in the negative direction. When a weak 

electron beam is present in the plasma, the beam's Langmuir modes couple with 

the plasma's ones, and the Bohm-Gross dispersion relation is modified. For a 

cold beam with velocity u, a narrow part of the beam modes become unstable, 

and simultaneously decrease their phase velocity (figure 5). For a warm beam, the 

plasma Langmuir modes become unstable for phase Velocities in the region 

where the slope of the beam-plasma distribution function is positive (Landau 

instability, figure 6). In fact figures 5 and 6 is somewhat simplified with respect to 

reality. In particular, for wave numbers far from the one defined by fO=u.k, there 

are two beam modes corresponding to the two counterstreaming Langmuir 

modes of the beam. Therefore, there are always three modes with a positive 

phase velocity for a given wave number. In figures 5 and 6 the emphasis is on the 

unstable branch, and the imaginary part of the pulsation (or wave number) is 

missing. 

f(v) 

kBT / me )1/2 

VT \ ~ ~ . ~  

V 

Figure 3. Maxwellian distribution function for electrons. 
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Figure 4. Bohm-Gross dispersion relation. 

r 

O)p 

78 

(q3 kD )-I 
k 

Figure 5. Dispersion relation of electrostatic waves for the cold beam-plasma 

instability. 



79 

0) 

~p 

UM. u ~/3 v T 

,;,4," 

Y , k 
(q3 ~,D )'1 

Figure 6. Dispersion relation of electrostatic waves for the warm beam-plasma 

instability. 

For the initial value problem, it is convenient to write the mode's electric 

field as Ek(t)exp[i(kx-cokt)], where ¢0 k and k are real. During the linear stage of the 

instability, E k grows like exp(~/kt). In the cold beam case, ~k is very peeked as a 

function of k. Hence one may consider that only one mode is excited. When it 
-1 

saturates, the period of the oscillations of E k in figure 1 is much larger than COp 

In the warm beam case, a broad spectrum of unstable modes is selected, and each 

-1 in figure 2. In both cases there mode fluctuates on scales much larger than COp 

are large-scale modulated envelopes. 

Together with the saturation of the modes,  there is a change in the 

particles' orbits in phase space. Figure 7 displays the structure of the initial phase 

space in the cold beam case. The initial trapping domain [7] related to the most 

unstable mode is clearly away from the beam particles. As shown in figure 8, 

when the mode ampli tude grows, the beam particles are t rapped in the wave 

troughs, and begin to rotate in phase space. For an appreciable amount  of time, 

most particles may be considered as having the same bounce frequency, which 

produces a rotating bar in phase space. This bounce frequency is the one visible in 

figure 1. 
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vq~ 
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v 

x 

Figure 7. Initial phase space for the cold beam-plasma instability. The beam with 

velocity u (thick line) and the initial trapping domain of the unstable mode are 

displayed. 

vq~ 

80 

x 

Figure 8. Final phase space for the cold beam-plasma instability. The final 

trapping domain of the unstable mode and trapped beam particles (thick line) are 

displayed. 

The right part of figure 9 displays the structure of the initial phase space for 

the warm beam case. The trapping domains of some unstable modes are visible. 

Initially nearby trapping domains do not overlap, or overlap so weakly that the 

chaotic time scale is much larger than the linear (Landau) growth time. When 
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the instability develops, chaos becomes dominant, and particles diffuse in phase 

space. This induces a slowing down of the beam particles, and the transition from 

a beam-like tail to a plateau, as shown in the left of figure 9. 

V 

! 

f(v) X 

Figure 9. On the right, phase space for the warm beam-plasma instability. On the 

left velocity distribution function before (bump) and after (plateau) saturation. 

3. THEORY TILL 1988 

The above features of the beam-plasma instability have been observed in a 

series of experiments both in the cold [8] and warm [9] case. Whereas the 

qualitative understanding of both saturations is good, theory is still incomplete, 

and even paradoxical. 

In principle, macroscopic classical physics should be descriptible as a N- 

body problem, i.e. as a problem of classical mechanics (this is Laplace's dream). 

The complexity of the problem and the chaos inherent to it forbid an explicit 

solution. Till now, this has excluded approaches starting from classical mechanics 

which is an essential root of physical intuition though (1st annoyance). It has 
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induced the splitting of macroscopic classical physics into a series of subfields, 

each of it characterized by an appropriate tool accounting for the relevant 

dynamics of interest : Boltzmann equation, Navier-Stokes equation, etc... The 

traditional tool of microscopic plasma physics is the Vlasov equation 

0f 0f qE 0f 
3-t + vb--xx + m 3--v =0 (1) 

where f is the velocity distribution function, and where the electric field is 

computed through the Poisson equation 

dE _ e (_~f(v) d v + n  0) , (2) 
dx eo 

where no is the. ion density, and f is for electrons (one could also write a Vlasov 

equation for ions). The Vlasov equation is analogous to the Boltzmann equation, 

and is derived from the Liouville equation through the heavy (2nd annoyance) 

BBGKY hierarchy. 

Already for linear theory, further annoyances show up. Linearizing the 

Vlasov-Poisson system, Fourier-Laplace transforming it, a pole hunting, and an 

analytic continuation yield the Landau effect but no physical interpretation (3th 

annoyance) of it, despite the considerable amount of work. Mysteriously (4th 

annoyance), there are eigenmodes for Landau instability, but none for Landau 

damping. When tackling the same problem with distributions, one finds a 

continuum of stable modes for a given wave number k : the van Kampen modes. 

They have not been detected experimentally, and constitute a kind of optional 

knowledge in plasma physics (5th annoyance). They enable the interpretation of 

Landau damping as a consequence of their phase mixing, but do not give its 

physical interpretation from the viewpoint of wave-particle interaction either 

(6th annoyance). 

Many textbooks fill in this gap with the following calculation : the change 

of kinetic energy of electrons in the presence of a sinusoidal wave with constant 

amplitude is computed perturbatively, and is balanced with the opposite change 

of wave energy ; this trick yields Landau's formula for the growth/damping rate 
1L' but van Kampen's approach shows it is fundamentally wrong for the damped 
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case (where is phase mixing ?), which is confirmed when the calculation is 

redone with the wave amplitude varying exponentially in time (7th annoyance). 

However these calculations suggest that, at least for the instability, Landau effect 
is due to the synchronization with the wave of particles within ~L/k of the phase 

velocity [10,11]. Hence resonant particles would not participate in the effect whose 

resonant character is clearly suggested by the Vlasovian approach (8th 

annoyance) ! 

In a true plasma, since there is a thermal level for field modes, Landau 

damping cannot lead below it. Therefore, it is not a linear effect as in a Vlasov 

plasma (9th annoyance). Would true Landau damping be a nonlinear non- 

resonant effect ? This is confirmed in the next section. In order to compute the 

thermal level, Vlasov's equation is useless, and textbooks introduce test particles 

which give spontaneous emission. Putting together this emission with the 

Landau effect yields the thermal level. This computation is typical of microscopic 

descriptions in plasma physics : there is no systematic way of dealing with them, 

but one must require ingeniosity and experience in order to select and to combine 

various basic equations (10th annoyance). None of them gives a complete 

description of the plasma state : a continuous or a granular medium ? This state 

of plasma theory contributed to a fame of plasma physics which is far from 

excellent among theoreticians (11th annoyance, for plasma physicists only !). 

Things worsen in the nonlinear regime. In the warm beam case, a theory 

appeared in the sixties, the quasilinear theory [2], which neglects the coupling 

between unstable Langmuir modes. It predicts the behaviour described in the 

previous section, and an experiment [9] was in good agreement with its 

quantitative predictions. However its assumptions were proved to be incorrect 

long before the saturation of the instability [12]. This motivated new efforts for a 

correct description of the nonlinear regime, and a realistic model predicted that 

the Landau growth rate, and the diffusion coefficient predicted by quasilinear 

theory should be renormalized by a factor of order 2 in this regime [4]. A 

numerical simulation indicated a smaller renormalization [13]. A quite accurate 

experiment was carried out in order to check these predictions. It confirmed that 

mode-coupling could not be neglected, but, paradoxically, it did not find any 

renormalization [3] (12th annoyance). The old quasilinear theory makes right 
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predictions with wrong assumptions, when the more recent Vlasovian approach, 

a priori more correct, is not confirmed experimentally (13th annoyance) ! 

In the cold beam case, no fully analytic description is available. However, 

the analytic endeavours opened a quite interesting path. They split the beam- 

plasma system into a bulk (the plasma) described by the Vlasov equation, and a 

beam described as a set of N charged sheets per spatial period L of the beam- 

plasma system [5]. This gives amplitude equations for the Ek where the source is 

due to the N beam particles, while the particle's motion is ruled by Newton 

equations where the force is due to the global electric field of M active Langmuir 

modes. This yields the set of self-consistent equations already mentioned. Since 

the unstable spectrum is narrow, M=I was chosen, and a numerical simulation 

gave the saturation features described in section 2. Seven years later, the 

Hamiltonian character of the self-consistent dynamics was made explicit by the 

derivation of a self-consistent Hamiltonian whose canonical equations yield the 

self-consistent equations [6]. The same paper introduced a rotating bar model for 

the description of the saturation in phase space, which accounted for the results 

of the previous simulation, but with 5 adjustable parameters. 

4. MICROSCOPIC PLASMA PHYSICS THROUGH CLASSICAL MECHANICS 

The 13 above annoyances, and especially the quasilinear paradox, directed 

the Turbulence Plasma team into a new approach of weak Langmuir turbulence 

that would be closer to mechanical intuition and could benefit from the recent 

progress of chaos theory. Therefore a description with a finite number of degrees 

of freedom was highly desirable, and the self-consistent Hamiltonian looked like 

a promising starting point. However,  considering the flow of reasoning on 

Langmuir turbulence starting from basic principles, this Hamiltonian is an 

intermediate point in the stream. 

Upstream are basic principles enabling to derive it. Its original derivation 

was not completely satisfactory for several reasons. When keeping in mind the 

mechanical character of a plasma, there should be a way avoiding to go through 

the infinite number of degrees of freedom of the Vlasov-Poisson system in order 

to get the finite-dimensional self-consistent Hamiltonian. Furthermore there 
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should be a Lagrangian or Hamiltonian path to it, which avoids building it by 

induction from the equations of motion. This suggested to start with a N-body 

problem. This approach proves to be quite efficient, and yields a lot more 

information than the Hamiltonian itself. It is the topic of section 4.1. 

Downstream are all the results which can be collected from it. Already the 

first 10 annoyances are suppressed this way, and there is a good hope to solve the 

quasilinear paradox from this starting point. Section 4.2 presents the results 

already available when chaos may be neglected. Section 4.3 gives a short account 

of the present results of a numerical simulation, using the self-consistent 

equations, of the regime corresponding to the quasilinear paradox. 

A general feature of the reasoning is to avoid as much as possible statistical 

methods, and to consider one realization of the plasma. Upstream, the statistics is 

restricted to the concept of typical realization of the plasma. Downstream, the 

averaging over realizations of the plasma is introduced after making sure that 

Landau damping cannot be obtained as a Floquet exponent for one sample. 

4.1. FROM N-BODY TO FIELD-PARTICLE INTERACTION [14] 

As the plasma (or beam-plasma system) is considered as one-dimensional, 

it may be described as a set of charged sheets. Since we consider Langmuir weak 

turbulence, ions may be considered as a neutralizing background whose role 

vanishes when the plasma is considered as periodic. As a result, our starting 

point is a set, with spatial period L, made of N electronic sheets per period. The 

starting equation could quite naturally be the Lagrangian of this system, but, for 

pedagogical reasons, it is interesting to start with the corresponding set of N 

Newton equations describing the motion of charged planes under the action of 

the Coulomb force due to the others 

~j =-i  E0mL qo ~ k1 ~ eik(xj_xl) 
k~ ZO l~j 

j = 1,N (3) 

where o is the charge surface density of a sheet, and other notations are standard. 
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We now introduce the concept of reference mult ibeam (section 4.1.1), 

collective variables (section 4.1.2), and linear eigenmodes (section 4.1.3). We then 

address the question of the validity of the linearization, what  turns out to be an 

inverse problem : for a typical initial plasma, what  is the best choice of reference 

multibeam (section 4.1.4) ? The solution to this problem motivates considering a 

Bohm-Gross plasma, i.e. a plasma with no particle resonant with Langmuir  

modes (section 4.1.5). Adding a resonant tail to the velocity distribution function 

leads naturally to the self-consistent Hamiltonian (section 4.1.6). 

4.1.1. Reference multibeam 

A reference multibeam is an ideal state of the plasma where all particles 

belong to a set of, say r, beams whose particles (at least two per beam) are 

equidistr ibuted spatially (figure 10). This is the analogue of the unper turbed 

distribution function of Vlasovian approaches. The j-th particle has a position 

V 

w 

A A A 
v w w 

f ( v )  ' x 

Figure 10. Reference multibeam. The particles are shown as black dots and the 

display is similar to that of figure 9. 
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~j = ~j0 + vjt (4) 

where vj belongs to { u v }, v = 1,r. This definition of the reference multibeam goes 

one step further in the direction opened by Dawson in 1960 when he dealt with 

the plasma as a set of fluid beams [15]. 

4.1.2. Collective variables 

We now consider plasmas whose particles have positions close to those of 
a given reference multibeam. It is natural to introduce the variables Tlj = xj - ~j. If 

particle j moves in the field of an unspecified spectrum of Langmuir modes 

(which may have an infinite number  of components in the case of a cold 

plasma), its acceleration is 

+~ qEk(t) ei(kxj -°~kt) (5) 
x j =  ~ m 

Here we perform a change of variable corresponding to the definition of N 

collective amplitudes a k and their complex conjugates defined by 

~j = ~ ak(t ) ei(k~j" C°kt) , (6) 
2xN 

Ikl< L 

which are reminiscent of qEk/m, with three important differences : the number 

of modes is the number of particles, the position of particle j is replaced with that 
of its nearby reference multibeam particle, and pulsation co k is as yet unspecified. 

Equation (6) can be inverted easily to give the a k explicitly as a function of the ~ .  

In the Lagrangian approach a slightly different definition of the ak's is preferred, 

ak(t) . COkt) 
TIJ = ~2~N ~ ei(k~j (7) 

lkl_< kj 
L 
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w h e r e  

£~kj = kvj- c0 k . (8) 

4.1.3. Linear e igenmodes 

We now look for ak's which are slowly varying on the t ime scale of the 

largest (l'-~kj) -1 . Linearizing the equations of motion in the TIj's yields 

2 2i , 1 1 / 
N J" ~jj fik + 0 --akf21~ j = a k 1 -  ~ (9) 

l kj 

Then, a k m a y  be taken as constant in this equation if D({o,k) = 0, where  D is the 

coefficient of a k in equation (9) ; note that in the fluid limit 

dv  
D(0},k) = 1 - f f(v) 

-¢¢ ({o k - kv) 2 
(10) 

Therefore D = 0 corresponds to the famous Bohm-Gross full dispersion relation 

(no expansion in k has been performed to yield equation (10)) [16]. 

In a plasma with a thermal bulk, if there are particles with a velocity larger 

than q-3-V T (the m i n i m u m  phase velocity in figure 4) this dispersion relation 

yields by continuity the beam modes related the fastest particles instead of the 

dispersion of figure 4. Therefore the previous definition of collective modes  is 

not  comple te ly  satisfactory.  Fu r the rmore  especial ly wi thou t  any  previous  

knowledge in plasma physics the above linearization is, as yet, just a trick. Indeed 

we just considered plasmas close to a given reference multibeam. We must  now 

address the difficult part  of the problem : if we take initially at random a plasma 

according to a uniform distribution in positions and to a given distribution in 

velocities, can we typically find a nearby reference mul t ibeam maximizing the 

number  of wave numbers  for which the above linearization is relevant ? How is 

the set of such wave numbers defined ? 
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4.1.4. Inverse problem 

We take a p lasma at r andom as just defined. In order  to define a reference 

mul t ibeam for this sample,  there are two, a priori arbitrary, steps : the choice of 

the n u m b e r  r of beams and that of their velocities. For each particle there is a 

closest beam velocity. The particle is said to be in the velocity domain  of the 

corresponding beam (figure 11). We then count  the number  of particles in each 

velocity domain  and assign this number  of particles to the corresponding beam. 

The last free choice is the phase corresponding to the initial posi t ion of one the 

beam's  particle. We then  n u m b e r  beam particles f rom left to r ight  and  do 

similarly for the particles in its velocity domain.  This defines the j's and TIj's. At 

this point  we can define collective variables as before. 

f(v) 

V 

• 0 "I 0 D--7 

0 I 

X 

Figure 11. Definition of the number  of particles in a given beam : actual particles 

are white dots ; reference particles are black dots. 

We choose co k according to the full Bohm-Gross dispersion relation. If we 

do not  linearize the equations of motion,  but  still make  the assumpt ion  of slow 

variation for the ak's, equat ion (9) is replaced with an ampl i tude  equat ion with 

the same lef t -hand side, and  a nonl inear  source term in the r igh t -hand  side 
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which incorporates all wave numbers. For the nonlinear source term to be small, 
k should be much smaller than the reciprocal of ~0' the typical value of T1. A 

small value of T10 can be obtained by putt ing many particles per beam. For the 

ampl i tude equation for a k to be correct, the second derivative of a k should be 

negligible initially. This can be simultaneously ensured for a number  r of wave 

numbers  by an appropriate  choice of the set of phases corresponding to the 

beams. A large value of N enables us to have simultaneously a large number  of 

beams and of particles per beam. Then, equation (9) turns out to be correct for k 

much  smaller than COp/Urn, where u m is the maximum velocity in the initial 

dis tr ibut ion funct ion  (Um>VT) , provided  the plasma density is low enough 

(negligible Coulomb collisions). This property enables the tail particles to play a 

part disproportionate with respect to their small number,  what  should be cured 

in some way. 

4.1.5 Bohm-Gross plasma 

As a first step, let us consider a Bohm-Gross plasma, i.e. a plasma with no 

tail, or, more  specifically, a thermal-like plasma whose tails are cut out  at 

Um<'~-3v T (figure 12). Then, for a typical sample of the plasma, we recover the 

usual Bohm-Gross dispersion relation of figure 4 for wave numbers lower than 
k D = 2~/KD, a usual condition in plasma physics. What occurs when k increases ? 

It is interesting to make an analogy with chains of nonlinear oscillators like 

Fermi-Pasta-Ulam's. In this case, mode coupling is small for large k's. When 

mode-coupl ing increases, thermalization of a mode's energy occurs on smaller 

and smaller time scales due to dynamical chaos [17]. One may expect something 

similar to occur in the plasma case. Numerical simulations of the plasma case 

give a clear evidence of thermalization for k above a critical wave number  which 
is larger than k D [18]. We expect this wave number to be typically 

i nkB T )1/2 
k ,  = k D W (11) 

where n is the plasma density, T its temperature, and W is the total electrostatic 

energy density (W = ~E2/2). 
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Figure 12. Velocity distribution function of a plasma with no particle resonant 

with Langmuir waves. 

Therefore, even without Landau damping, modes with k larger than k, 

cannot be observed because of thermalization. The corresponding ak's are rapidly 

fluctuating quantities. If tail particles are added, this property prevents the 

existence of a resonant-like behaviour, and Landau damping does not play any 

role either. 

Modes with k>k, provide a fluctuating action on plasma particles. The 

k>>k ,  part of it has been known for a long time under the name of Coulomb 

collisions (quite weak in one dimension). The other part has been missed by 

previous approaches which could not tackle the graininess of the plasma. 

Nevertheless it is quite living a part as well, and it could provide the missing 

ingredient for the explanation of Langmuir paradox : electrons would thermalize 
due to chaos on the scales about (k,) -1. At this point one could wonder whether 

chaos at the thermalization scale could not be an essential ingredient in the 

explanation of so-called anomalous transport [19] as well. After these speculations 

we go back to the main stream of the reasoning. 
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4.1.6 Plasma with a tail 

The preceding step suggests that, when dealing with a plasma with N 

particles, some of them having velocities larger than ~ V T ,  one should split it 

into a Bohm-Gross bulk which allows the definition of collective variables, and a 

tail which has a number  of particles n<<N. These particles have Newton  

equations 

a k e  , ~- ¢0 mL k~ ; Y~ -Xl) 
= k~ i(kx.- c01,t) _ iclc~ 1 eik(xj 

1~ tail 
(12) 

where I kl takes on N-n values in the first summation and all integer values in 

the second one. Similarly envelope equations for the collective variables are 

3 
Ok ei(kXl - C0kt) + Nonlinear source ({ak.}) (13) ak 2mk 

1~ tail 

The c0 k in this formula corresponds to the bulk and thus differs from that 

in section 2. It is interesting to notice how a N-body system splits naturally into n 

bodies and N-n collective degrees of freedom which in turn split into Langmuir, 

thermalizat ion,  and Coulomb scales (large, in termediate ,  and small). In 

particular, the N-body system possesses a wave-like field, the Langmuir waves. 

Equations (12) and (13) are an extended version of the self-consistent 

equations of reference 5. The last term of equation (12) corresponds to the beam- 

beam interactions, and embodies in particular effects at the beam's plasma 

frequency. As was done in references 5 and 6, we may neglect this term for a 

small tail. Moreover, tail particles are mainly sensitive to near-resonant modes, 

and we may restrict the summation in equation 12 to a small number  of modes 

nearly resonant with the tail particles (this number was 1 in references 5 and 6). 

Self-consistency only requires the corresponding envelope equations to be 

considered, especially for Langmuir modes where the nonlinear coupling can be 

neglected in many applications. Dealing from the outset with a Lagrangian or 

Hamiltonian formalism makes it quite trivial that the self-consistent equations 

stem from the canonical equations of a self-consistent Hamiltonian. Define real 
variables Xj and Yj by 
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2im eiC0jt Xj + iYj = a k , j= 1,M, (14) 

(21) 

with these variables the Hamiltonian becomes 

1 N  M N ~l~k_~ ~ j  
H'sc = 21__~1Pl 2+ ~ °)j Ij-e ~r21~ 1= -= c°s(kjXl- ej 

j=l j 

! 
_ -  (15) 

2 0)p 2 ' 

q 2e2n t 
e = e0 N ' (16) 

where n t is the tail density. The self-consistent Hamiltonian is 

N M 
1 2 1 yj2)  

Hsc = 2 ~ P l  + 2 ~  coj(Xj 2+ 
1=1 j=l 

+ e £ £ N  M ~kj ( Yj sin kjx I - Xj cos kjx 1 ) , (17) 
1=1 j=l 

where N now stands for n, and M is the number of Langmuir modes of interest. 
It is useful to introduce the action-angle variables (Ij, 0j) related to mode j 

Ij = 1 (~2 + yj2), (18) 

Xj = 2Q~-j cosOj, (19) 

Yj= 2 ~ 7  j sinOj; (20) 
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It is worth noticing that the energy conserved during the motion embodies the 

wave-particle coupling energy. It is easy to see from equation (21) that the total 

wave-particle momentum 

N M 
P = ~ p l  + ~ k j I j  

1=1 j=l 
(22) 

is conserved [6]. 

4.2. FROM FIELD-PARTICLE INTERACTION TO QUASILINEAR EQUATIONS 

[201 

As we are dealing with Hamiltonian dynamics, it is natural to study one 

realization of the plasma (section 4.2.1) before studying ensemble averages 

(section 4.2.2). More preliminary results concerning this section were given in 

references 21 and 25. 

4.2.1. Normal modes in one plasma 

We may introduce reference multibeams for tail particles as well (figure 

10). For such a multibeam the source term for modes at t=0 vanishes due to 

destructive interferences. If the modes' amplitudes are zero initially, they stay so 

for all times. A reference multibeam is the equivalent of a Vlasovian trivial state, 

spatially uniform with zero field. The dynamics of the zero-field state is here 

defined by one angle per reference beam. The zero-field state is therefore an 

invariant torus which is not a KAM torus, since its dimensionality is smaller 

than the number of degrees of freedom (we now assume there are at least three 

particles per beam). 

We now restrict our attention to the cases where the beams' velocities are 

integer multiples of a basic one Av. Linearizing the equations of motion about a 

zero field state yields a series of equations which may be cast under the form 
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U(t) = ( M 0 + Ml(t) ) U(t) (23) 

where  U is a N'=2(N+M) dimensional  vector, M 0 is a static N'xN' matrix and M 1 

is a t ime-periodic N'xN' matrix with a frequency k v / L .  Equat ion (23) defines a 

Floquet problem. Its general solution is 

U(t) = V(t) e (?- i co) t (24) 

where Y and m are reals defined for M=I by 

N y ( p l - m )  
? = (~ 13)2 £ 2 

I=I[72+(pi-o~) 2] 
, (25) 

m = 1 + T 1 = 1 1 2 7 i p l _ m ) 2 ]  2 
(26) 

In order  to simplify the formulas,  they are wri t ten for mj=kj=l,  and  index j is 

omit ted .  Most  exponen t s  are zero, but  for each beam there  are just  four  
nontr ivia l  ones  of the form Yl+iml , -Yl+iml . Their  symmet r i e s  are a mere  

consequence of the Hamil tonian  (symplectic) nature  of the dynamics .  The four 

complex  normal  modes  per  beam enable al together  the cons t ruc t ion  of the 

classical two real modes  per beam. 

If I?1 >>kv, one finds a solution 

171 = YL (27) 

with the Landau growth rate 

af 
2 ap (28) 
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where f is the tail velocity distribution function (from now on Jf(p)dp = 1 on the 

domain of tail velocities) evaluated at the phase velocity of the wave. Obvious.ly 
equat ion (27) is meaningful  only if ~'L is positive. We thus find that one 

realization of a plasma with a positive slope of the velocity distribution function 

possesses unstable eigenmodes with the Landau growth rate. Their frequency 

turns out  to be given by the usual formula with a principal part of Vlasovian 

theory. Particles are acted upon by a force due to the wave which produces on a 

particle a time-averaged acceleration 

(00- p) (e~Z)2 
<p> = [72 + (C0-p)2] 2 

(29) 

where Z is the wave amplitude. This shows that the Landau instability is related 

to a synchronization of particles with the wave. Such a formula was alreary 

der ived th rough  a per turbat ion calculation by Kupersztych [11], and the 

synchronization mechanism is clearly suggested in Nicholson's book [10]. The 

particles whose velocity is the most affected by the wave are those with a velocity 

y /k  away from the wave's phase velocity (here k=l). Conversely they are the most 

active in the instability. Resonant particles play no role (remember that the wave 

ampli tude is assumed to be small). This contrasts with the opposite suggestion 

coming from the Vlasovian approach ! The quadrat ic  dependence  of the 

acceleration on Z is consistent with the existence of the conserved total 

m o m e n t u m  (22). The existence of a damped  mode with an opposi te  ~ is a 

consequence of the symplectic character of the dynamics. With probability one 

the unstable modes show up for a random initial condition. 

If there is no Landau instability for a given k, we just find a family of 

no rma l  m o d e s  wi th  T=0 or 7van i sh ing  in the limit of small Av's. They 

correspond to modes already identified by Dawson [15] as corresponding to the 

Vlasovian van Kampen modes. For a typical initial condition and for a given k, 

the most strongly excited van Kampen modes are those with a velocity close to 

the phase velocity of the bulk mode (the one for e=0). This is consistent with the 

Vlasovian case. 

At this point we found the van Kampen modes, but no Landau damping. 

Is it a failure of our  approach ? No, this is a mere consequence of the 



97 

Hamiltonian character of the plasma. If Landau damping was related to damped 

eigenmodes, symplecticity would impose the simultaneous existence of unstable 

modes with the opposite growth rate, which would show up with probability 
one! There is no eigenmode corresponding to Landau damping, a fact already 
present in the Vlasovian approach which also tells us that Landau damping is 
the result of the phase mixing of van Kampen modes. Phase mixing is a statistical 
property which is missed for one realization of the plasma. We must now 

consider ensemble averages. 

4.2.2. Ensemble averages 

We would like to consider an ensemble of plasmas whose tails have a fixed 
distribution function, but random initial positions for the particles. Ensemble 

averaging on such initial conditions can be quite easily performed on the results 
of second order perturbation expansion in e [21]. This yields for the wave 

amplitude 

<ij> = 2 7L j <Ij> + Sj (30) 

where YL j is given by equation (28), and Sj by 

~x N ~2 i]j2 co. 
Sj = kJ 3 f ( ~ ) (31) 

For the particles one finds diffusion and friction coefficients enabling one to write 
the Fokker-Planck equation 

3f 3 [  3f I Of 
3t - 3p D(p) ~ + F(p) ~-~ (32) 

where 
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~¢2 [~2 
F(p) = - - -  (33) 

~ p )  

and 

92 
D(p) = P I(p) (34) 

where the p dependence of co and I means the choice of coj and Ij with j such that 

kj = P" These equations are the usual quasilinear equations completed with the 

spontaneous emission of tail particles. In the case of the warm beam-plasma 

instability they provide the plateau formation of figure 9, before leading to a 

distribution function with a negative slope which anticipates the formation of a 

globally maxwellian distribution. Unfortunately this nice result is as yet obtained 

by a perturbation technique requiring the wave amplitude to stay almost constant 

for it to be valid. In order to describe the growth or damping of a wave, we thus 

need a more powerful technique we now describe. 

We formally integrate the linearized particle motion of equation (23), and 

insert the result  in the equations ruling the linearized wave motion.  This 

provides a differential equation for the square of the wave ampli tude we may 

average over initial realizations of the plasma. If we average over initial 

positions of tail particles when keeping fixed for each of them its reference 

particle, we violate the conditions of validity of the linearized equations. Instead, 

for each sample we must  number  the particles as we did in section 4.1.4. For N 

large enough and a typical sample, this warrants that linearization is justified. 

Since the dominant  van Kampen modes are concentrated near the phase velocity 

of the bulk mode, the correlation time of the wave amplitude is long with respect 

to the inverse of the max imum Doppler frequency of the tail particles. This 

enables us to split averages occurring in the evolution equation of the wave, and 

to recover equat ion (30). The term corresponding to spontaneous  emission 

contains initial conditions explicitly, and is hard to estimate this way, but it must  

have the same value as in equation (30), as the two derivations have a common 

time interval of validity. In the second derivation, as in classical derivations of 

Landau damping  [1] or quasilinear theory [2], the time interval of validity is 
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bounded by the time for separation of nearby orbits which is either the trapping 

time for regular motion, or the Lyapunov-Landau-Dupree time [22] 

%D = (k2D) - 1/3 (35) 

for chaotic motion, where D is the diffusion coefficient for particles. 

Equation (30) provides the Landau damping we were looking for. Because 

of spontaneous emission this equation also shows the well-known existence of a 

thermal level in the damped case. Therefore the Landau damping rate turns out 

to be a rate of relaxation toward the thermal level. A wave cannot be damped  

below this level (it would grow in the unlikely case where it would start below 

this level). As a result, in a true plasma, Landau damping is a nonlinear effect, 

which is hidden in the Vlasovian approach where the thermal level vanishes. It 

is also a non-resonant effect, as formula (29) can be recovered by a treatment of 

the particles similar to the one just described for the waves. This treatment also 

provides the Fokker-Planck equation (32). In the warm beam instability, many 

modes are simultaneously unstable. Each of them tries to synchronize particles 

with itself, and this results in a global beam drag. Other results can be got by the 

same technique, in particular the existence of a diffusion of the phase of a wave 

about the average value given by the Vlasovian expression with a principal part. 

The average behaviour may be seen on one realization of the plasma because 

fluctuations about the average are small when the number  of particles is large 

[33]. 

4.3. TOWARD A CHAOTIC QUASILINEAR THEORY [23] 

The above derivation of the quasilinear equations does not hold when 

chaos is dominant. This corresponds to the regime where the quasilinear paradox 

is present. Before tackling chaos in the self-consistent case, it is tempting to first 

study the much simpler (but far from trival !) case of the motion of one electron 

in the field of a fixed spectrum of Langmuir  waves. Unexpectedly, numerical 

s imulat ions revealed that for wave ampli tudes  about 18 times above the 

threshold of chaos, the diffusion coefficient corresponding to the chaotic motion 
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is 2.4 times the quasilinear one, and it is still 10 per cent above it 100 times above 

threshold [24]. This regime is hereafter referred to as intermediate resonance 

overlap. It indicates a dependence of transport on the graininess of the turbulent 

spectrum, but  not on the spectral density. In the limit of a continuous spectrum, 

transport  is quasilinear in the non-self-consistent case. This enhanced value of 

the diffusion coefficient was missed in previous calculations because there is an 
initial time interval, typically given by ZD' such that transport is quasilinear, as 

can be shown by perturbation theory [25]. 

The self-consistent equat ions provide  a quite attractive basis for a 

numerical  simulation of the saturation of the warm beam-plasma instability. 

Indeed, no computational effort is wasted in the description of the bulk plasma, 

and it is even possible to focus on a part of the velocity domain  where the 

distribution function has a positive slope. In agreement with experiments, the 

s imulat ion reveals a strong mode  coupling, but  no renormalizat ion of the 

quasil inear predict ions when  the graininess is low [26]. For in termediate  

resonance overlap, an enhanced value of the growth rate with respect to tL is 

observed, in agreement with the results of a previous "Vlasovian" code [13] (the 

quotation marks are used because, due to discretization, the code recovers the 

spontaneous emission dramatically missing in a pure  Vlasovian approach). So, 

the self-consistent case looks similar to the non-self-consistent one : except for 

graininess reasons, the quasilinear predictions are correct. The similarity between 

the low-dimensional  case and the high-dimensional  one, is not  fortuitous. 

Indeed, there is good evidence that Hamiltonian dynamics with many degrees of 

freedom may be locally reduced to dynamics with 1.5 degree of freedom [27]. 

The analytical explanation of the numerical results, even in the non-self- 

consistent case, is not trivial. Indeed this means the understanding of the origin 

of decorrelat ions in Hami l ton ian  dynamics .  The s t re tching and folding 

mechanism observed in phase space on the homoclinic tangle, the structure 

under lying chaos, is the origin of the process. This was used in [28], but  the 

understanding of homoclinic tangles still is in infancy [29]. As yet the existence of 

a supraquasilinear regime is confirmed by a calculation using an approximation 

of the true dynamics by a mapping,  and making reasonable assumptions on the 

chaotic dynamics [24]. 
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5. CONCLUSION 

This paper has given a simplified account of the qualitative features of 

large scale structures in the simplest case of kinetic plasma turbulence, the 

electron beam-plasma instability. The basic physics of this phenomenon  is 

unders tood ,  but  theory is still unsatisfactory, and even paradoxical.  The 

weaknesses of the traditional approach of microscopic plasma theory were 

analysed. Then a new approach, relying upon a classical mechanical technique (a 

part of Laplace's dream), was described. It starts from a N-body description of the 

plasma, goes through the derivation of a Hamil tonian describing the self- 

consistent evolut ion of Langmuir  waves and near-resonant  particles, and 

provides a derivation of the quasilinear equations where spontaneous effects are 

included. This derivation makes clear the physics of wave-particle interaction, 

and answers many question raised by the Vlasovian approach. In particular, 

Landau damping  turns out  to be a non-resonant  nonlinear phenomenon  of 

synchronization of particles with a wave. The regime where chaos is dominant  is 

still unexplained analytically, but a numerical simulation starting from the self- 

consistent equations yields results which agree with experiments. 

Future research on the chaotic regime should benefit from the present 

formulation with a finite number  of degrees of freedom, especially when the 

connection with low-dimensional dynamics becomes visible. The generalization 

of available results to 3 dimensions, or weak turbulence phenomena including 

ions, does not look difficult. 

In fact the new mechanical approach should be interesting to a much  

broader audience than plasma physicists. First, the self-consistent equations have 

a typical structure, occurring in the study of electronic tubes and, in particular, 

free electron lasers. All reasonings held for the beam-plasma system can thus be 

generalized to these devices. 

Second, the new approach is not restricted to Coulombian interactions and 

might  have a more universal character. Other classical systems could thus be 

described by using a similar approach. How feasible is it ? It is too early to tell. 

However,  some similarities between the  plasma and fluid turbulence problems 

are striking. First, a new regime between the inertial Kolmogorov regime and the 

dissipative regime has been recently evidenced in fluid turbulence [30]. Our 
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analysis shows the existence in the plasma of scales intermediate between the 

large ones (Langmuir waves) and the "dissipative" ones (Coulomb scales), where 

mode  coupling becomes dominant  and where non-dissipative thermalization 

processes should occur. Second, it becomes clear that a correct description of fluid 

turbulence should incorporate both a traditional modal  description and localized 

objects (the vortices). In the plasma case, we saw that the degrees of freedom of 

the system split naturally into collective modes and particles : the N-body system 

is made  of several objects of different natures. Indeed we even found that the 

collective degrees of f reedom themselves split into large scales (Langmuir  

waves), small scales (Coulomb scales) and intermediate scales where chaos is 

dominant .  By analogy with Landau  damping  one may wonder  about the 

existence in a fluid of a damping of modes by vortices. 

Similarities are also striking with other non-classical plasmas : the quark- 

gluon plasmas. Indeed in a high energy collision the quark-gluon plasma goes 

from an initial stage of weak coupling to one of strong coupling [31]. This is 

similar to what  occurs in the warm beam-plasma instability where the initial 

phase may be described perturbatively, and the final one is fully chaotic. The 

evidence for existence of intermittency in high energy collisions [32] further 

supports the analogy. 

Naturally,  the results presented here are still preliminary. We are like 

archeologists digging out  an ancient town. At present the main lines of the city 

map are visible (this was not yet the case in a previous publication [25]), but a lot 

of dust  still needs to be removed before the main buildings be ready for a visit. 

Nevertheless having a tour may be interesting. Section 4.2 is the closest to the 

state of a traditionally publishable result. 

I thank the organizers of the workshop for giving me the opportuni ty to 

present the theory as it stands without the referees' censorship (but with more 

risks of publishing an error !). I thank the members of the Turbulence Plasma 

team for the joy I have to work with them. I am grateful to M. Antoni, Y. Elskens, 

A. Verga, and S. Zekri who made  a careful reading of the manuscript ,  to Y. 

Elskens who made  numerous  improvements  to the style, and to him and S. 

Zekri for their assistance in preparing the figures. 
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A B S T R A C T  

Supersonic turbulence is observed in the giant molecular clouds in the galactic 
disk and may also occur at re-entry of space shuttles. Numerical simulations in three 
dimensions concerning compressible homogeneous non-s ta t ionary flows using the fluid 
equations with the Navier-Stokes formulation, a hyperviscosity method, and new sim- 
ulations of the Euler equations using the PPM code are presented. Results are for 
random flows at a r m s  Mach number of unity on uniform grids with periodic boundary 
conditions. Through visualization and analysis of the fluid simulations, we conclude 
that:  i) shock waves and shock intersections play an important  role in the transfer of 
energy from long to short wavelengths. Weak shocks survive for several ra~, where ra~ 
is the acoustic time of the energy containing modes in the initial state. In the context of 
our decay problems, vorticity is concentrated in filaments, and not sheets, within a few 
acoustic times. Whereas in two dimensions eddies tend to slowly merge over many r~ ,  
in 3-D vortex filaments break up into short filaments within a few Ta~; ii) three tem- 
poral phases are identified in the evolution of the flow, onset and formation of shocks, 
quasi-supersonic phase with many interacting shocks, and post-supersonic phase with 
a velocity spectrum flatter than that of Kolmogorov. 

1. I N T R O D U C T I O N  

Compressible flows are observed within giant molecular clouds which are the site of 
star formation and supernovae explosions. Several characteristic features of these clouds 
remain unexplained: they resist collapse for times an order of magnitude larger than 
what the linear analysis for a static cloud predicts; and supersonic flows, with r m s  Mach 
numbers of --~ 4 persist although shock formation should lead to a rapid dissipation of 
kinetic energy. In the former case, internal motions are present that  help support the 
cloud through an additional pressure term (Chandrasekhar, 1951); the formation of 
shocks can provide another mechanism of support (L~orat et al., 1991). In the latter 
case, magnetic fields are invoked to substantially reduce the rate of energy dissipation. 
Indeed, magnetic fields are observed both on large scales through the alignment of bi-  
polar jets emerging from protostars, and on smaller scales; their magnitude is, in velocity 
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units,  slightly larger than  the velocity of the fluid and thus dynamical ly impor tan t  
(Heiles, 1987; Lada and Shu, 1990). 

Turbulence is another  key element in the dynamical  evolution of molecular cloucls 
(Falgarone, 1990; Falgarone and Philipps, 1990; Scalo, 1990; Henrikseu, 1990), but little 
is known on compressible turbulence at high Mach number.  Numerical  computa t ions  of 
homogeneous turbulent  flows in three dimensions for both  the decay problem (Feireisen 
et al., 1981; Erlebacher  et al. 1987; 1990; Lee et al., 1991; Zang et al., 1991) and the 
s ta t ionary  case (Kida and Orszag, 1991) are scanty. 

Section 2 gives a review of numerical  results using Navier-Stokes  solvers with ex- 
plicit dissipation, through a Laplacian and with an hyperviscosi ty method;  Section 3 
describes results using an Euler solver, PPM (Woodward,  1986; Woodward  and Collela, 
1984; Collela and Woodward,  1984) in three space dimensions, and Section 4 is the 
conclusion. 

2. T H E  V I S C O U S  C A S E  

2.1 Introduction 

We discuss numerical  simulations using the Navier-Stokes  equations,  and a stan- 
dard pseudo-spec t ra l  code. Let us give for reference purposes the relevant equations 
and the various paramete rs  of the initial conditions. The velocity field is decomposed 
into its solenoidal u ~ and compressional u ~ components  as follows: 

u = u ' + u  ° , (2 .1)  

with V .  u s = 0. The  associated Fourier velocity spectra  are denoted respectively by 
E : ( k ) ,  E : ( k )  and E l ( k  ) with E• + E i = E:  = ½f pu2(x) d d x .  The fluid dynamical  
equations for a perfect gas law are wri t ten as: 

O,p + V . ( p u )  = O , 

1( ) O,u  + u .  V u  = - ( , y  - 1) V ( p e )  + V2 p u +  v ( v . u )  , 

Ore+ u Ve - - ( ' 7 - - 1 ) e V ' u +  1 7 • = - - r  : D +  V2e , (2.2) 
pR P r R p  

where p is the density, e = c ,T  the internal  energy and T the tempera ture ;  7 = 1.4; the 
sound velocity is c (with mean value co): 

c2 = 7 ( 7 - - 1 ) e  ; 

the Prand t l  number  Pr  = #o%/~  is equal to unity in all the viscous calculations; 
cp (resp c~) is the constant  pressure (resp constant  volume) specific heat;  #0 and 
are the diffusion coefficients of the velocity and tempera ture .  The l~eynolds number  
is R = poUoLo/#o where P0 is the mean density taken equal to unity, and U0 is the 
velocity at the energy-conta in ing scale Lo = 2r/ko.  The mean t empera tu re  is also taken 
equal to unity. N is the number  of grid points in each direction, uniformly distributed; 
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k,~i~ = 1 is the minimum wavenumber, and k,~a= = N / 2  the maximum wavenumber. 

Finally, ri~ is the stress tensor 

Vii = ~0 ( - 2 V "  U~ij + Dij ) (2.3a) 

and Di~ the deformation tensor 

l o u  D,j  = -~( j , + O, u j )  . (2.3b) 

The dispersion of the density fluctuations 

@ = (p - p 0 ) / p 0 ,  

as well as the temperature fluctuations are initially between 0% and 20%, and the 
density contrast 

~'p = Pmo=IP..~ (2.4) 

is initially close to four. 
The viscosity is adjusted in a dichotomic way so that no numerical noise appears. 

This typical ly requires that  shocks be resolved on the order of ten grid points or more. 
Otherwise, oscillations will appear in their vicinity which will be particularly prominent 
in the velocity divergence and vorticity fields. The viscosity typically is 10-2 for a Mach 
one flow on a N = 128 a grid and with initial conditions centered in the large scales 
(k0 "~ 2). The boundary  conditions are periodic in all directions. The initial conditions 
are that of a random flow with a spectrum of prescribed width and characteristic scale, 
namely: 

E ( k )  ~,, k4e -2(k21~) 

The ratio of the compressional to total components of the kinetic energy 

X = E C / e °  (2.5) 

is yet another parameter  of the initial conditions; we take X ~ 0.09. 
Initially, the kinetic energy is equal to unity, and the initial rms  Mach number 

Ma = Uo/co is close to one. The helicityis defined as H = f u . w  d3x where w is the 
vorticity, and the relative helicity is: 

= H / < u s >~ < w 2 >~ (2.6) 

A partially implicit temporal  scheme is used in conjunction with the viscous term 
to handle the regions of space where the minimum density p ,~ ,  is particularly low, a 
problem that arises in three dimensions. 

2.2 N a v i e r - S t o k e s  solver 

The decay problem with adequate viscosity to resolve the shocks has been performed 
in three dimensions on a Nm~= = 1283 grid. The main results of these Navier-Stokes 
simulations are now briefly summarized: 
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i) There are two main regimes, one subsonic in which the solenoidal modes dominate 
at small scales and one supersonic in which the compressional modes dominate at small 
scales; the transition between the two occurs for an initial rms Mach number of M~ 
0.3, as in two dimensions (Passot and Pouquet,  1987). This corresponds to the presence 
of at least one strong shock in the flow. However, when at small Mach number the 
density fluctuations initially are larger than O(M~), another regime occurs in which 
most of the kinetic energy is in the acoustic modes (Erlebacher et al., 1990; Bayly et al., 
1991). In all cases, the equipartition between E, and E~ in the small scales, postulated 
by Kraichnan (1953) on the basis of a statistical argument,  does not seem to hold. 

ii) Once the shocks have formed, they are the main process through which kinetic 
energy is dissipated into heat in the supersonic regime. As the Reynolds number in- 
creases, the turbulent transfer of energy to small scales through mode coupling will 
become more prominent.  It should be the main dissipative process of the late acoustic 
phase. 

iii) The temporal  evolution of the Mach number displays a plateau corresponding 
to the replenishing of the kinetic reservoir through energy exchanges with the heat bath; 
this indicates that  there are standing adiabatic waves present in the system. It is similar 
in 2-D and 3-D, at least for a few eddy turn-over  times. However, for times long enough 
that  the flow has become substantially subsonic, the Mach number may become very 
low in three dimensions, since no spurious conservation of vorticity will hinder the decay 
as is the case in 2-D. Finally, we note that  acoustic oscillations are visible for long times. 

One significant difference between the 2-D and 3-D Navier-Stokes results is that  
the density contrast is stronger in 3-D. For example, for a run with initially a Mach 
number M~ = 2.2, a Taylor wavenumber ~T *~ 3 .8 ,  X : 0.05 and a Reynolds number 
R = 55, the density contrast Ap reaches a value close to 100, the minimum density 
being P,,~i,~/Po = 0.07, and for a similar run with kT ~'~ 1.5 and R = 120, Ap = 54. 
At similar Reynolds numbers in two dimensions, Ap is less than ten. It is likely that  
this phenomenon amplifies with the Reynolds number. Finally, inertial indices in three 
dimensions are not established at such low resolutions of the computat ion.  The spectra 
are steeper than k -2,  the main cause apparently being contamination by the nearby 
viscous range. However, we note that  at a fixed time to the solenoidal spectrum is still 
steeper than its acoustic counterpart ,  indicating a slower transfer to small scales of the 

vortices. 
To be able to reach higher effective Reynolds numbers, and thus a larger span in 

wavenumbers in the inertial range, adequate modeling of small-scale flows is in order. 

2.3 Hyperviscosity solver 

The limitation on the Reynolds number tha t  is reasonably attainable with Navier-  
Stokes solvers is drastic when the three space dimensions are retained. A way around 
this difficulty is to resort to a model for the small scales, both in the inertial range 
and in the dissipation range of the flow. The one-point  or two-point  closures used in 
modeling industrial flows with complex boundaries will not be mentioned here (see Ha 

Minh and Vandromme, 1986). 
A common simple approach to such modeling of small scales is to use a high power 

of the Laplacian, or a hyperviscosity method, corresponding to a k 2~ dissipation, with 
r /=  1 for Navier-Stokes. By a "k 2n dissipation" we mean that  an isolated Fourier mode 
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of wavenumber k decays at a rate proportional to k 2' .  This decay rate has units of 
inverse time, which are the same for each wavenumber and not dependent on the sound 
or flow crossing time of a wavelength for each mode. The Green's function associated 
with such a diffusion operator has negative lobes, giving rise to a dissipation that is 
not everywhere positive in space, although the integral of the local dissipation remains 
positive. One may introduce on basic principles a bi-Laplacian ,,~ k 4 dissipation and 
impose the positivity in all space (Passot and Pouquet,  1988). The price to pay is 
that  the dissipation operator is now nonlinear. In the simplest case, one may replace 
the standard dissipation function with constant viscosity #0 in equation (3a) by one in 
which the viscosity coefficient #~ depends quadratically on both the solenoidal and the 
compressional components of the velocity field, namely: 

1 2 
~' = ~ (I2 - ~*1 ) (2.7) 

where I1 = D ,  (see equation (2.3b)), I2 = D~jD~j, and now #1 is an adjustable pa- 
rameter depending in particular on the grid resolution. Field-dependent viscosities as a 
model of small scales have already been derived, for example that based on second-order 
closures (Chollet and Lesieur, 1981), or that  of Smagorinsky (1963) in convection in the 
meteorological context. 

The hyperviscosity method has only been tested in two dimensions until now. It 
is found that  the large scales are reproduced accurately (Passot and Pouquet,  1988); 
the small scales are noisy and an adequate filtering should be introduced, for example 
through a "laplacian viscous term" at a lower level, allowing it to be felt only in the 
close vicinity of k,~,~. 

3. P P M  S I M U L A T I O N S  O F  3-D C O M P R E S S I B L E  T U R B U L E N C E  

3.1 Introduction 

A very different approach consists in dealing with the Euler equations, omitting 
in equations (2.2) all dissipative terms, and introducing an adequate dissipative mech- 
anism to spread shocks over about two zones. The dissipation of small scale waves is 
then to be regarded as caused by numerical errors in approximating the Euler equations. 
These errors must be very carefully controlled so that the numerical solution converges 
as uniformly as possible to a weak solution of the Euler equations. The Piecewise- 
Parabolic Method, PPM,  (Woodward and Collela, 1984; Colella and Woodward,  1984; 
Woodward 1986) represents the present state of the art for such schemes. PPM incor- 
porates high-order interpolation techniques augmented by monotonicity constraints in 
order to resolve sharp features in the flow over only about two computational  zones. In 
addition, it tests for the presence of contact discontinuities, and if these are detected it 
uses specialized interpolation techniques to see that these discontinuities remain sharp 
as they move through the grid. Shocks are detected as well, and extra dissipation 
is carefully computed so that  shocks will remain sharp but at the same time emit a 
minimum of numerically generated oscillatory waves into the flow behind them. The 
version of PPM used in the computations presented here is closest to that  described by 
Woodward (1986), where these special features of the method are discussed in detail. 
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F i g u r e  1: Tempora l  evolution of the characterist ic wavenumber  kl separated into its 
solenoidal (circles), longitudinal (crosses) and total  (solid line) components .  The 
unit t ime for all the figures is the acoustic t ime r ~  of the energy-containing eddies. 
Note the onset of the quas i -s teady supersonic phase in k~ at tl ,-~ 0.3 and tha t  of 
the pos t -supersonic  phase in k, at t2 ,~ 2.1. All wavenumbers  k,  defined in (3.1) 
globally evolve in a similar way, except for n = - 1 :  the compressional component  
of the integral  wavenumber  k_ 1 displays clear acoustic oscillations of period v~.  
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for definitions) of the compressional part of the kinetic energy as a function of time. 
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We have recently undertaken a detailed comparison of PPM calculations with those 
of PPMNS,  a Navier-Stokes solver, (Porter et al., 1991d) in the specific context of mod- 
eling homogeneous turbulent flows in the limit of high Reynolds number. The numer- 
ical viscosity of PPM has been determined for isolated sinusoidal waves (Porter  and 
Woodward,  1991; Porter  et al., 1991a); it has a wavenumber-dependency intermediate 
between a k 4 and k 5 law. It is important  to note that  the similarity in decay rates of 
isolated sinusoidal disturbances of long wavelength for PPM and for spectral methods 
with bi-Laplacian dissipation does not imply similar accuracy in modeling intermediate 
and small scales. Both PPM and the bi-Laplacian methods mentioned above are highly 
nonlinear. A simple power-law for decay rates of isolated modes is but one measure of 
dissipation; there are infinitely many possible dissipative forms which lead to the same 
decay rates of isolated modes. The t reatment  of very short wavelength modes in PPM 
involves much stronger dissipative mechanisms arising from this scheme's monotonicity 
constraints and its special dissipation terms which turn on only within strong shocks. 

3.2 Temporal evolution of a supersonic flow 

In the 3 D - P P M  simulation that  we now present, we choose units so that  the mean 
density P0 and initial mean sound speed co are both unity (see also Porter et al., 1991b 
~: c). We set the initial rms fluctuations in the density, 5p = (p - Po)/Po, pressure, 
5p = (pe-poeo) / (poeo) ,  and velocity, 5U0, to 20 ~ ,  20 %, and 1, respectively. Boundary 
conditions are periodic and the initial conditions are identical to those given in Section 
2. This numerical simulation was performed on a 2563 mesh, and the maximum time of 
the computat ion is t = 3.2 va¢, where ra~ is the acoustic time of the energy-containing 
scale and is the unit of time for these computations.  

Let us define k.,¢ and k.,,  as the wavenumbers associated with the compressional 
(x = c), solenoidal (x = s) and total (x = t = c + s) components of the velocity field 
U = U s -.~ u C :  

1 

k~,~ = k " E : ( k ) d k  / E : ( k ) d k  (3.1) 

where E~ are the power spectra of the velocity for the c-, s-  and total components.  
One recovers the Taylor kT and the integral k1 wavenumbers for n = 2 and n = - 1  
respectively. 

The kinetic energy of a compressible flow decays inexorably as a consequence of 
shock formation and vortex stretching. It appears to take place in three distinct phases 
separated by short transitional periods (Porter et al., 1991b): a first period dominated 
by the phase-coherent  mechanism of shock formation, then a compressional period of 
shock interactions, and thirdly, a period dominated by vortex interactions and vortical 
decay. This is revealed in the temporal  evolution of several small-scale variables: the 
characteristic wavenumbers kl, representative of all k, except for n = --1 (see below), 
is shown in Figure 1 and the density contrast Ap in Figure 2. In Figure 1, the crosses 
correspond to the wavenumber associated with the compressional velocity modes, the 
circles to the solenoidal modes, and the solid line corresponds to the wavenumber com- 
puted from the total velocity. 
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Indeed, we can distinguish three distinct phases of the evolution in these plots. 
First is a period of rapid growth, up to tl ~ 0.3. This onset phase corresponds to the 
formation of shocks which, as coherent nonlinear structures, feed compressional modes 
of all wavenumbers at the same time. At t ~ tl,  the density fluctuations ~p reach a 
value of 52%, the density contrast Ap ~ 60, and P, ,~, /Po = 0.14. From tl onward, the 
compressional modes k,,¢ are roughly constant while the solenoidal components continue 
their longer period of initial growth. Following this phase of growth and shock formation 
is a supersonic phase for tl < ~ < t2 with t2 ~-, 2.1, during which the solenoidal modes 
kn., continue to grow, and the density contrast remains at a high value, on average 
45; there are local fluctuations due to the presence of many strong shocks and to their 
interactions. During this second phase a roughly linear growth for kn,~ occurs, at a rate 
which increases with n for n = 1,2,3, and 4. For n > 4, k , , ,  increases abruptly at time 
tl ,  and then increases at a rate independent of n until time t2. During this second phase 
local regions of supersonic flow can be found. 

Finally we have a post-supersonic phase in which the rms  Mach number is sub- 
stantially lower than unity, and the local Mach number is smaller than one almost ev- 
erywhere in space. During this third and final phase, both the density contrast Ap and 
the density fluctuations Sp are much smaller (Ap ~ 4 and ~p ~ 0.15 at tma= = 3.2ra~). 
The characteristic wavenumbers k, are now roughly constant in time; they scale linearly 
with the order n, and vary from kl ~-, 10 to ks ~ 50. Furthermore, the ratio k~,s /k~,c  

, approximately 2 for n=2,  diminishes for higher moments. The integral wavenumber 
k 1, however, has a different evolution. Both components grow in the shock formation 
and supersonic phases, and start to decay again at the onset of the post-supersonic 
phase (Porter et al., 1991c). This can be attributed to a shift at late times to larger 
scales of the energy-containing range in a self-similarly decaying flow. Furthermore, 
large amplitude acoustic oscillations of period r,c are present in the integral scale of 
the longitudinal component,  k_l,~. These oscillations are also observed in k,,~ for n = 
1, 2, and 4, but are much weaker in amplitude (decreasing as n increases, and in fact 
marginal at n = 4); they are in phase with the oscillations in k_ ~,¢. 

The dominance of solenoidal modes present in the initial conditions with our choice 
of X is recovered after a short period of time during which the compressional modes 
overpower the solenoidal ones in the small scales due to strong and rapid shock formation 
preceding slower vortex formation. In Figure 3 are shown both X defined in (2.5) and 
X2 defined as 

X~ = ~ / ~ o  (3.2) 

where ~= = f k 2 E~ (k)  dk are the enstrophies of the flow; X2 characterizes the relative 
degree of compression in the small scales. The value of X remains close to 10%, while the 
evolution of X2 (which emphasizes small scales) reflects the three characteristic temporal  
phases. Both X and X2 tend to increase slightly during the post-supersonic phase. 

After the time of shock formation the rms  Mach number M~, initially equal to 1.1 
with excursions up to M , ~  ,'~ 6.2, decays steadily and linearly from t = 0.4 to t = 2.0. 
It is below unity after t ~ 0.6. The rms Mach number is equal to 0.36 at the final 
time of the computation.  At this time the local Mach number still displays a few local 
excursions up to M,~,= = 1.5, as can be inferred from histograms of the Mach number 
(Porter et al., 1991c). For example, at t = 2.96, all of the regions of locally supersonic 



114 

-i 

I I I r 

CD 

0 
,-4 

b2 
0 

-3 

-4 

-5 

- 6  

-7 f I 
0 .5 1 1.5 2 

Log10 k 

F i g u r e  4a Growth of compressional velocity spectra in the supersonic phase for times 
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Figu re  4b Growth of solenoidal velocity spectra in the supersonic phase. Note the 
early establishment of a self-similar spectrum for E¢ while E, continues to grow. 
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Figure  5a Compresslonal velocity spectra in the post-supersonic phase for times 2., 
2.4, 2.8 and 3.16 in units of roe. 
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Figure  5b Solenoidal velocity spectra in the post-supersonic phase. Note the shallow- 
ness of the solenoidal spectrum. 
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flow occupy 0.03% of the volume. This small portion of the 16.8 million grid points is 
equivalent to a cubic box roughly 17 grid points on a side. 

We note that  the time for compressional modes to develop fully is considerably 
shorter than the time for the solenoidal modes to develop in the system examined here. 
All of the compressional modes jump simultaneously from their initial very small values 
(e.g., essentially zero for kn > 5) to within 86% of their peak values in the time interval 
[0.3t1,~1]: all compressional modes are excited together when shocks form by time tl.  
The solenoidal modes grow more slowly and at different times: solenoidal modes of 
shorter wavelengths take longer to reach their peak amplitudes than do those of longer 
wavelengths, indicative of a forward cascade of energy. The time for all of the solenoidal 
modes to develop fully seems to be linked with the eddy rotation time of the energy 
containing scale, which is close to t2. 

The slower growth of the solenoidal modes as compared to the compressional modes 
which we observe in our simulation can be explained as follows. Given our initial condi- 
tions, and for almost any supersonic and random initial conditions, the entire velocity 
field (not just the initially compressional component) contributes to shock formation. 
In general, a random pressure field is not consistent with stable eddies. Furthermore,  in 
our 3D simulation, initial pressure fluctuations are about six times too small to support 
stable eddies that  rotate with the initial velocities given. Therefore the initial energy 
in the solenoidal field is quickly converted into compressional energy, as elements of gas 
moving in roughly straight lines collide. In order for an eddy to equilibrate, the fiow 
must traverse the eddy's circumference. But in order for a shock to develop, two parts 
of a flow moving in opposite directions at supersonic speeds need only move a fraction 
(less than half) of their initial separation. The distance equal to half of the energy 
containing scale corresponds to both a typical eddy's diameter and the typical initial 
separation of elements of gas that  energetically collide. Both sets of motions come from 
the same random velocity field, so they typically have similar amplitudes. Hence, the 
ratio between the time of shock formation and the time of eddy formation is roughly 
the ratio of the distances given above, which is the ratio of the radius of a circle to its 
circumference; in fact, t 2 / t l  ~ 7. 

3.3 Characterist ic  s tructures o f  a decaying supersonic f low 

The temporal  evolution of the velocity power spectra E ( k )  ..~ k i with i the spectral 
index, follows that  of the integrated variables we have described above. Small scales 
develop as the flow evolves; the compressional spectrum settles at t ~.- tl and then decays 
in a self-similar fashion, with an index i~ ~ - 2 . 0 6 + 0 . 0 3  on average. On the other hand, 
the evolution of the solenoidal component of the velocity is much slower. A self-similar 
regime occurs only after t ~ t2, with an index close to i, ~ -0 .94  :t: 0.02. The total 
spectrum is dominated at all scales, except for a short time early in the quasi-supersonic 
phase, by its solenoidal component.  

We show the temporal  evolution of the spectra early in the quasi-supersonic phase 
(0 < t < 1) and in the post-supersonic phase (2.0 < t < 3.2) in Figures 4 and 5 
respectively, separated into their compressional (a) and solenoidal (b) components.  The 
spectral indices, once the supersonic phase is well established, are close to --2 for all 
three (s, c and t) spectra, as is expected for a velocity discontinuity, which is the 
structure that  must be dominant during that  time. In the last phase, the spectral 
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indices for the s- and c-  spectra differ. Whereas the compressionat component retains a 
rather steep spectrum, whose index is still close to but shallower than - 2 ,  the solenoidal 
component  has an index close to - 1 .  Since the latter dominates the total velocity, the 
velocity spectrum is thus quite flat during that  period. This behavior may be due to 
hysteresis: the history of a supersonic phase in a now-subsonic flow leaves traces. This 
effect was already encountered in our two-dimensional computations,  where filamentary 
structures in entropy, density and vorticity were observed at late times (Porter et al., 
1991c) and there were strong local vortices superimposed onto warped vorticity sheets 
in the subsonic phase (Passot et al., 1988). The k -1 spectrum is also reminiscent of the 
spectrum of a passive scalar advected by an incompressible flow (Leslie, 1973). 

The temporal  evolution of vorticity comoving with the flow is given by 

d w / d t =  B + S  , (3.3a) 

with the inhomogeneous baroclinic term 

B = (Vp × V p ) / p  2 (3.3b) 

and the terms linear in w (stretching and compression) 

s = V ) u  - ( v .  u) (3.3c) 

From inspection of the histograms of both B and S we infer that  in the early 
supersonic phase the baroclinic and the linear terms are roughly balanced: 90 % of 
the points in the flow have a value of vorticity production below 250 for the former, 
and 450 for the latter, values that  are comparable; we obtain equivalent results at the 
99 % level (1,350 vs 2,130). This indicates that  vorticity production through shock 
curvature (including intersecting shocks) is as important  as the linear term, at least 
for Mach numbers of unity and for a length of the inertial range spanning roughly one 
decade in wavenumbers. In order to assess the relative importance of these two terms 
graphically , we now examine the plots of one-dimensional (that is, wavenumbers taken 
in only one direction) power spectra in log-log coordinates for the norms of both the 
baroclinic and linear terms as they appear in the equation given above. Figure 6 shows 
this comparison at times 1, 2, and 2.96. We find B < S most of the time and for most 
scales. However, the two terms are comparable during the time of initial growth of the 
vorticity - up to when the compression first becomes stationary (t ~ t l) .  The linear term 
is mostly dominant  later on due to its being proportional to the vorticity. In an initially 
supersonic flow, the baroclinic term acts as the principal trigger of vorticity production 
on small scales; intersecting shocks plant the seed of vorticity at short wavelengths which 
then may undergo an exponential growth for some time via the linear terms during the 
intermediate phase tl < t < t 2. Vortex sheets are established at shock intersections, and 
these sheets subsequently roll up due to the familiar shear instabilities. These vortex 
tubes are also unstable and are disrupted by kink instabilities, in which the phenomenon 
of vortex stretching plays a major  role. This sequence of events is reflected in the figures 
1 and 2, but it is most clearly revealed in animations of volume rendered images of the 
flow which we have generated in our "numerical laboratory" (Porter  et al., 1991c). It 
would be useful as well to compare the intensity of the incompressible stretching term 
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of vorticity production, to the production stemming from pure compression; this work 
is now in progress. 

In Figure 7, we show the evolution of the probability distribution functions of 
several variables: (7a) density; (7b) entropy; (7c) vorticity; (7d) divergence of velocity; 
and (7e) relative helicity, as defined in (2.6). 

These probability distribution functions are simply histograms on the full 2563 
grid, normalized to have a unit integral on the interval of definition. They are shown 
at times t = 0 (triangles), t = 1.48 (stars) at which time the system is well into the 
quasi-supersonic phase, and t = 2.96 (squares) near the end of the simulation. 

In the density pdfone  can clearly see the augmentation of the density contrast Ap 
in the supersonic phase and its narrowing later in time as the flow becomes subsonic. 

As time evolves the pd fo f  the entropy defined as S = log~(P/p ~) has a wider peak 
(by a factor 3) at time ~ = 0.48 (not shown here) than at t = 2.96. Similarly, the entropy 
contrast S , ~ / S , ~ ,  is ,~ 6 at t = 0.48, and is ~ 2.5 at t = 2.96. This narrowing of 
the entropy distribution indicates a slow evolution towards mixing and homogenizing 
of the flow. Fluid mixing is expected in our system, but homogenization of entropy can 
only happen through diffusion, which in our case arises from numerical errors: PPM 
cannot follow an entropy structure which is less than one zone wide. The slow rate 
at which the entropy homogenizes is a measure of how little numerical diffusion there 
is in this simulation. Even though the flow is subsonic at late times, there are still 
entropy fluctuations due to shocks set up by the high Much number initial conditions. 
Entropy fluctuations, with their associated density fluctuations, make our flow (even at 
late times) violate the assumption of nearly uniform density which is typically made in 
analytical studies of low Mach number flow. Thus, the arguments leading to steepening 
of the classical k -s /3  Kolmogorov spectrum through coupling of vortices to acoustic 
waves (Moissev et al., 1981) apparently do not apply here. 

A wide distribution of vorticity is generated during the first half of the simulation. 
At t -= 1.48 the average vorticity is 47.1 and the rms vorticity is 60.0, as compared to 
their initial values of 13.0 and 14.1 respectively. Vorticity decays in the second half of the 
simulation: by t = 2.96 the average and rms vorticities are 35.9 and 42.2 respectively. At 
this final time, the vector vorticity is exponentially distributed, that  is the distribution 
of the magnitude of w is given by ~(w) ,~ w2e -~ .  

The probability distribution function for V . u ,  another small-scale variable, shows 
a marked development of high values (in magnitude),  the distribution for the divergence 
being skewed on the negative - compressional - side. This is related to a volume factor, 
since shocks are intermittent,  ie more concentrated in space than rarefaction waves, and 
since the total divergence of the velocity for a flow with periodic boundary conditions 
must sum to zero. 

Finally, the relative helicity ~ defined in (2.6) remains small (,.~ 3%) throughout  
the entire evolution of the flow. This shows that  there is no generation of helicity in 
the flow, except possibly where the compression is strong. The pd fo f  ~ shown in (7e) is 
flat, indicative of a uniform distribution. Histograms conditioned by the amplitude of 
the vorticity become flatter for higher values of the vorticity. 
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4. C O N C L U S I O N  

Shock waves and shock intersections play an important  role in the transfer of energy 
from long to short wavelengths for both the compressional and solenoidal components 
of the velocity field. Weak shocks survive for many r~ ,  where r ~  is the acoustic time of 
the energy containing modes in the initial state. In the context of our decay problems, 
vorticity is concentrated in long filaments and not sheets which tend to break up into 
shorter filaments within a few r~c. Local fluctuations in the relative helicity are strong, 
even though the average relative helicity may be very small. 

Strong shocks in the early phases of our models produce entropy fluctuations. In 2- 
D we clearly see that  entropy fluctuations are stretched into filaments by the solenoidal 
component of the velocity field. The inverse relation between entropy and density at 
constant pressure in our 7-law models implies that filaments in entropy are mirrored 
in the density field. Entropy fluctuations persist in our models because we impose 
no thermal conductivity. A very low thermal conductivity, which is expected in large 
astrophysical systems, should allow entropy fluctuations to be long lived and to develop 
into filaments in much the same manner as they do in our models. This could explain 
the observed filamentary nature of molecular clouds. 

The compressional components of the velocity power spectra vary as EC(k) ,,, k -2 
in their inertial ranges for times t > 0.25v~, which is due to the presence of shocks. 

For t > 2.4r~¢ the velocity power spectra settle into a self-similar exponential decay 
with time. For these decay problems, the solenoidal components of the velocity power 
spectra comprise ~ 90°/o of the total energy. Hence the spectral index of the solenoidal 
component ES(k)  is close to that of the total E~(k). We find E~(k) ,,~ k -1, markedly 
flatter than the Kolmogorov law. This flat spectrum is indicative of an accumulation of 
small-scale motions in the form of small vortex filaments. 
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Abstract  

The anisotropic kinetic alpha effect (AKA) and the (magnetic) alpha effect refer to 
large-scale instabilities which develop in low Reynolds number flows and lead to an ex- 
ponential growth of a weak large-scale velocity or magnetic field respectively. When the 
nonlinearities become important, an inverse cascade is observed, yielding the formation 
of structures at larger and larger scales, up to the limits of the system. 

1. In troduct ion  

A celebrated example of large-scale instability in magnetohydrodynamics is the alpha 
effect [11-[3]: a small-scale flow acting on a large-scale magnetic field generates a mean 
electromotive force which is a function of the large-scale magnetic field itself. When the 
small-scale flow is helical or otherwise lacks parity invariance [4], this effect may lead to 
a dynamo effect, i.e. the growth of a weak large-scale magnetic field. 

An analogous effect, the AKA effect, was recently found in ordinary hydrodynamics 
when a large-scale velocity field is superposed on a small-scale anisotropic flow lacking 
parity invariance [5]-[7]. It requires that Galilean invariance be broken, for example 
by the body force which maintains the small-scale basic flow. In this case, due to the 
advection of the small-scale flow by the large-scaie motion, the Reynolds stresses depend 
of the large-scale velocity itself. This again may lead to an instability where a we~,k 
large-scale velocity field is amplified exponentially. 

For both alpha and AKA effects in the linear approximation, the destabilizing 
terms in the induction and momentum equations for the large-scale fields are propor- 
tionai to first derivatives of the magnetic and velocity fields respectively. Consequently, 
these terms can dominate viscous or Ohmic dissipation, whatever sinai1 the Reynolds 
numbers are, provided the system be sufficiently extended. This contrasts with neg- 
ative eddy viscosity instabilities for which the Reynolds numbers should exceed finite 
critical values, thus making explicit computations significantly more delicate [8]. Ex- 
amples are provided by time-independent one-dimensional parallel periodic flows, like 
the Kolmogorov flow [9]-[11]. 

When as a result of the AKA or the alpha instability, a large-scaie magnetic field 
or a large-scale secondary flow develops, nonlinear couplings become relevant. They 

* Also at School of Mathematical Sciences~ Tel-Aviv University, Israel 
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may either consist of direct interactions between the large-scale fields or result from the 
feed-back of the large scales on the small scales. The aim of this paper is to review 
the similarities and the differences of the various nonlinear regimes induced by these 
instabilities, and in particular the inverse cascades which develop in extended systems. 
Special attention is devoted to the dynamo instability when the initial (weak) large-scale 
magnetic field is genuinely three-dimensional. New results are presented in this case. 
For the sake of consistency, changes of notation have been made relatively to papers 
quoted in references. 

2. The  an iso t rop ic  kinet ic  a lpha  effect ( A K A )  

Let us consider a low Reynolds number basic flow stirred by a space and time periodic 
body force f(x, t). A large-scale velocity v superposed to this flow satisfies 

(2.1) 
Oivi = O, 

where the (periodicity averaged) Reynolds stresses rij read [7] 

- 1  ^ ,  . 

r , j  = Z u2k 4 + (k  . v _ w)2 f~ ( k ' W ) f j ( k ' w )  " (2.2) 
k~ t# 

Here f'(k,w) is the Fourier transform of the body force. In eq.(2.1), the space and time 
variables refer to variations on scales larger than those of the body force, by factors R -2 
and R -4 respectively. 

When the issue is the stability of the basic flow to weak large-scale perturba- 
tions, the Reynolds stresses can be linearized in the form Ojrij  = aii tOjvz with 

[6__.~_] It immediately follows that a linear AKA instability cannot occur if 
a~jt = [ 6~, Jr=0" 
the basic flow is isotropic or parity invariant. Equation (2.2) shows that it is also the 
case if the body force is time-independent. In the absence of AKA effect, the Reynolds 
stresses are to leading order proportional to the large-scale velocity gradient and induce 
an eddy viscosity in the momentum equation for the large-scale flow [8]. Furthermore, if 
the basic flow is two-dimensional or axisymmetric, the AKA effect is purely undulatory 
and no AKA instability occurs. 

A simple example of body force leading to a linear AKA instability is 

f l  = f c o s ( k 0 y  + , / ,  = / cos(k0  - , f3 = + (2 .3)  

We write f = uVok~, where V0 is a typical ~¢elocity from which we define the forcing 
Reynolds number R = Vo/uko characteristic of the basic flow. If L denotes the largest 
available scale of the system, we rescale x = LX , t = L 2 u - I T  , V = v / V o  . The 
large-scale secondary flow resulting from the AKA instability then obeys 

c' o + n j) = _Ox,  P + C~T Vi + -~ X i 
(2.4) 

Ox, V i = O ,  
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with 
1 

TQ1 = TQs = I + RV2 + ½R2V~ ; TQ2 = O 

i 

T~22 = T~2s = 1 -  RVI + ~ ,1 i~2Tz2 ; ~ 3 3 = R 1 1 + ~ 2 2 .  

In eq.(2.4), we assume 2~r-periodicity in the X-variable. Note that although the forcing 
Reynolds number R is taken small, the parameter a = R2Lko can be made arbitrarily 
large by increasing the aspect ratio Lko. 

2.a. Laye red  large-scale  s e c o n d a r y  flows 

Eqs.(2.4)-(2.5) admit solutions depending on the X3-coordinate only. We refer to 
these flows as "layered flows". Due to the incompressibility condition, self-advection 
in eq.(2.4) drops out and V3vanishes. The nonlinearities thus reduce to the feed-back 
of the large-scale velocity on the small-scale flow. The Reynolds number can then be 
eliminated from the resulting equations by measuring the large-scale velocity in units of 
R -1 , and a remains the only control parameter. For a < 1, the zero solution is stable. 
As a crosses the value 1, the modes of wavenumber K = 1 become linearly unstable, 
and a subcritical bifurcation occurs leading to a steady solution with a finite amplitude 
[12]. The dynamics for larger values of a (corresponding to extended systems where a 
significant range of scales are linearly unstable), was addressed numerically in [6] and 
[7]. At early times, an initially weak large-scale velocity field is dominated by the growth 
of the linearly most unstable modes. When the nonlinearities become important, the 
maximum energy migrates to larger and larger scales, up to the limits prescribed by the 
size of the system. In physical space, this corresponds to a reduction of the number of 
structures in the velocity field by merger and destruction. This phenomenon of "inverse 
cascade" is illustrated in Fig.1 which displays the time-evolution of the (rescaled) en- 
ergy modes E K  = ½1RVgl 2 with K = 1, ..., 6 for a = 8. In this case, the linearly most 
unstable mode corresponds to a wavenumber K = 4. A noticeable property is that the 
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Fig. 1 : Evolution of energy modes (see labels on the curves) for the layered secondary flow generated by 

the AKA instability with a = 8. 
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velocity of the resulting large-scale secondary flow saturates at a level of order O(R -1 ), 
thus significantly higher than the amplitude of the basic flow. 

An analysis of the inverse cascade is given in [7] where a dynamic mechanism is 
presented. For layered flows, eqs.(2.4)-(2.5) admit a sequence of steady cellular solutions, 
unstable to large-scale perturbations. During the cascade, the solution of the evolution 
problem is successively attracted by steady cellular solutions of larger and larger scales, 
until the limits prescribed by the size of the system. Note that a similar inverse cascade 
occurs for the Kolmogorov flow [13]. Although driven by a negative viscosity, it also 
appears to be the consequence of instabilities of steady cellular solutions [9]. 

2.b. T h r e e - d i m e n s i o n a l  large-scale s e c o n d a r y  flows 

Numerical simulations of eqs(2.4)-(2.5) show that when the basic flow is subject to 
a large-scale perturbation depending on the three space coordinates, the velocity of 
the large-scale secondary flow resulting from the AKA effect saturates at a level of 
order O(R) [7]. This indicates that the nonlinear dynamics is dominated by the self- 
advection of the secondary flow rather than the feed-back to the small-scale flow. The 
Reynolds stresses may be linearized and the Reynolds number can again be eliminated 
by measuring now the large-scale velocity field in units of R. In this regime, the large- 
scale secondary flow is thus significantly weaker than the basic flow. Note that this is 
also the case for the large-scale velocity resulting from the negative viscosity instability 
of the golmogorov flow [9], [1O]. 
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Fig. 2 : Evolution of shell averaged energy modes (see label on the curves) for the three-dimensional 
secondary flow generated by AKA instability with a ---- 16. 

Figure 2 displays the time-evolution of the (rescaled) energy modes EK = 
~,~:1 'eCK I R - 1 V K  , 12 in spherical shells CK = { g  - ½ _< g '  < g + ~}, around the 
wavenumbers K -- 1, ..., 8 for a = 16. A more usual representation of the inverse cas- 
cade is seen in Fig.3 where the energy spectrum is plotted at increasing times. We 
observe that after the early-time linear phase during which the linearly most unstable 
shell K = 8 dominates, an inverse cascade develops like in the case of layered large-scale 
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Fig.  3 : Inverse energy cascade for the three-dimensional secondary flow generated by AKA instability 
with a = 16. 

flows, although the nonlinear processes are different. Visualizations in physical space 
show the formation of structures correlated on larger and larger scales [7]. The flow is 
three-dimensional and displays a moderate anisotropy. 

3. T h e  a lpha  effect for e lec t r ica l ly  c o n d u c t i n g  fluids 

Consider now an electrically conducting fluid driven at a scale 1 / k o  by a prescribed 
solenoidal body force f(x, f), periodic in space and time (or random, homogeneous and 
stationary). This force is now assumed to be helical. As previously, the Reynolds 
number R is assumed to be small and the Prandtl number is chosen of order unity. In 
the presence of a large-scale magnetic field b or velocity v, the basic flow is modified at 
small scales, and this may lead to a mean electromotive force (e.m.f.) e(v, b) and/or a 
mean Reynolds stresses r(v,  b). Note that the dependence on v, arises because Galilean 
invariance is generally broken by the body force. The equations for the large-scale fields 
then read: 

O~vl + O j ( v i v j  - b lb  i + v~ j )  = - O ~ p  + v V 2 v i  

O,b = V x (v x b + e) + ~/V2b (3.1) 

&v~ = 0 ; &b~ = 0 .  

In the limit of small Reynolds numbers, we have [16]: 

with 

r,j = ~ (k" b ) 2 -  ( k ' v - w ) 2 - ~ / 2 M  
k, [ Q I 2  ] * ( k , w ) ] j ( k , w )  

- ~ l k i ( k "  b) h / (k ,w ) , Z IQP 
k~ w 

Q = ( v k  2 + i ( k . v -  w)) (~?k  2 + i ( k . v -  w)) + (k .  b) 2. 

(3.2) 
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Here i'(k,w) is again the Fourier transform of the body force, while hl(k,w) = 
f*(k ,w) ,  ik × l'(k,w) denotes the helicity in each Fourier mode of the body force. 
When the forcing is assumed to be random, ]~*]j and hi  in eqs. (3.2) are replaced by 
their statistical average. Equations (2.1)-(2.2) for the AKA effect are recovered in the 
absence of magnetic field. At the opposite, when the small-scale dynamics is insensi- 
tive to a large-scale velocity field (Galilean invariance), the Reynolds stresses and mean 
e.m.f, depend on b but not on v. The corresponding equations were first considered in 
[14] in the case of an homogeneous isotropic steady basic flow. 

When in the limit of weak large-scale fields, the mean Reynolds stresses r and mean 
e.m.f. • are linearized, we may obtain an AKA instability if the basic flow is anisotropic 
and lacks parity-invariance and a dynamo instability at comparable scales if it possesses 
helicity. Furthermore, there are two different mechanisms for the saturation of these 
instabihties. The mean fields v and b may interact through the quadratic terms in eqs. 
(3.1), and such direct couplings may lead to saturation. However these terms may be 
zero, for example, if the large-scale fields depend on only one space coordinate [15]-[17]. 
In this case, saturation is only due t o  the nonlinear dependence of the mean e.m.f, and 
Reynolds stresses on the large-scale fields. 

3.a. Layered  large-scale magne t i c  fields 

In this section, we restrict our attention to situations where there is no large-scale veloc- 
ity field and where the large-scale magnetic field depends on only one space coordinate 
(for example the Z-coordinate). For simplicity we also assume a unit magnetic Prandtl 
number. After changes of variables analogous to those discussed in the case of the AKA 
effect, the equations governing the evolution of a large-scale magnetic field lying in a 
domain of characteristic length-scale L read [16]: 

OT B1 = -aOZE2( B1, B2 ) -f- O~ B1 

OrBs = acgzEl(B1,B2) + O~B2 (3.3) 

B3 = 0 .  

In eqs.(3.3), a = R2Lko and the magnetic field B (measured in units of R -1) is taken 
27r-periodic in Z. The normalized e.m.f, is given by: 

k~(k. B)h/(k ,  w) 

A simple steady helical body force leading to an alpha effect instability consists of 
the sum of two Beltrarni waves: 

f(x, t) = i f  sin(k0y), f cos(k0z), f[sin(koz) + cos(k0y)]) . (3.5) 

In this case, 

B2 B1 
s l  - + 1)2 ' 6 - + 1)2 " ( 3 . 6 )  

The Reynolds stresses vanish and any large-scale velocity perturbation decays by viscous 
dissipation. In contrast, a large-scale magnetic perturbation is exponentially amplified. 
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When for large a,  eqs.(3.3),(3.6) are integrated numerically starting with weak ini- 
tial conditions, an evolution qualitatively similar to that of the AKA effect is observed. 
At early times, the magnetic field is dominated by the growth of the linearly most un- 
stable modes. At larger amplitudes, the nonlinearities become important and magnetic 
energy is transferred to successively larger and larger scales in an inverse cascade. 
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Fig. 4 : Evolution of energy modes (see label on the curves) of the layered magnetic field generated by 
alpha effect for the body force (3.5) with a ----- 8. 

This phenomenon is illustrated in Fig. 4 for the body force (3.5) with a -- 8. 
The (rescaled) energy EK of the large-scale magnetic modes is plotted against time for 
K = 1, ..., 5. A simulation for a larger number of unstable modes (a = 20) is presented 
in [18]. Like in the case of the AKA effect, during the inverse cascade the system is 
attracted by a sequence of steady cellular solutions with the form of hyperbolic fixed 
points, stable to perturbations of smaller scales and unstable to perturbations of larger 
scales. Ultimately, the system stabilizes on the steady cellular solution corresponding 
to the largest available scale. For this solution, the Fourier modes of even wavenumber 
vanish, a property reflecting a symmetry B(Z + rr) = - B ( Z )  of the solution in physical 
space. 

When the body force is random, homogeneous and isotropic, the mean e.m.f, has 
the form: 

E = 9(IBJ)B, (3.7) 

where g is a scalar function depending on specific hypotheses about the forcing. Phe- 
nomenological models where g is given a pr ior i  are considered in [ 1 5 ] , [ 1 7 ] .  A specially 
interesting model is that introduced by Kraichnan [19],[20], in which the body force 
injects fluid helicity into the system at a constant rate, an idealization commonly used 
in turbulence theory. Kraichnan achieves this by taking a body force which is a white 
noise in time; however a constant helicity injection rate may also be prescribed within 
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the framework of multiple-scale dynamics by assuming that the body force is advected 
by the large-scale flow in order to preserve Galilean invariance. In this case [16]: 

1 
g ( I B I )  = (1 - IB I  - ~  a r c t a n ( I B I ) ) I B i  ~ • (3.s) 

The mean e.m.f, given in [19] and [20] is recovered in the limit of strong magnetic field. 
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Fig. 5 : Same a~ Fig. 4 in the case of an isotropic forcing corresponding to a prescribed helicity injection 
rate with ct = 8. 

Figure 5 shows the dynamics which develops with a = 8. We again observe an 
inverse cascade for the magnetic field. It is easily checked that the system admits steady 
cellular solutions of the form of Beltrami waves associated to different wavenumber. As 
a result of the inverse cascade, the system eventually evolves to a Beltrami wave of unit 
wavenumber. 

These observations are not specific of a constant helicity injection rate. A very 
similar evolution is observed with a prescribed isotropic helical body force assumed to 
be advected by the flow in order to preserve Galilean invariance [16]. 

3.b.  T h r e e - d i m e n s i o n a l  large-scale  magne t i c  fields 

The body forces used in Section 3.a have also been considered for initial large-scale 
perturbations depending on the three space coordinates. In this case, the Reynolds 
stresses do not vanish. When the basic flow is stirred by a random homogeneous isotropic 
body force associated to a prescribed helicity injection rate, the equations for the large- 
scale velocity and magnetic field read 

OT~ + c~Ox, (R-2(~I ,~  - B i B i )  + 7~ii) = -Ox ,  P + AV~ 

0TB = ~ v  × ( a - ~ v  x n + e) + AB 

Ox, ~ = 0 ; Ox~ Bi = 0 , 

(3.9) 
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with 
B~Bj 

7~j -- 3{3 - (1 + 3iBI-~)IBI arctan(IB0} 

& = 3(1 - IB1-1 arctan(IBI) ) B~ ( 3 . 1 0 )  
IBP ' 

where velocity and magnetic field are again measured in units of R -1. Figures 0 and 
7 display the result of the numerical integration of eq.(3.9) for II ~ = 1/10 and a = 8. 
The initial conditions consist in weak three-dimensional kinetic and magnetic noises. 
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Fig. 6 : Evolution of shell averaged magnetic and kinetic energy modes of initially three-dimensional 
large-scale perturbations when the small-scale flow is stirred by the same forcing as in Fig. 5 with 
~ 8 .  

In Figure 6, the shell-averaged magnetic and kinetic energy spectra are shown 
versus time. In Fig.7 the energy of a few individual magnetic or kinetic Fourier modes 
belonging to the shells K = 1,2 and 3 are plotted versus time. At early time, magnetic 
modes depending on the three coordinates are amplified exponentially as a result of 
the linear alpha instability. For the considered value of a;  the linearly most unstable 
modes correspond to a wavenumber K = 4. When the magnetic field starts growing, the 
velocity field is also amplified under the effect of Lorentz force and Reynolds stresses. 
A rapid magnetic inverse cascade is visible in Fig.6 after the linear phase: magnetic 
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energy modes corresponding to larger and larger scales become dominant  successively. 
Figs.? show tha t  during this process, velocity and magnet ic  field depend on the three 
space coordinates.  Nevertheless, when as a result of the inverse cascade, the magnet ic  
energy shell K = 1 becomes dominant ,  the magnet ic  energy in the other shells falls 
down rapidly. The  velocity also decays and the magnet ic  field eventually reduces to a 
pure Bel t rami wave of a unit wavenumber.  The sys tem thus evolves to the same solution 
as in the case of an initially layered magnet ic  field, except tha t  the wavevector  may  now 
be directed along any of the coordinate axes with an equal probabili ty.  
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Fig. 7 : Evolution a few individual magnetic and kinetic modes of the shells K = 1 ,2 ,3  for the 
conditions of Fig. 6. 
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The three-dimensional transient nevertheless depends on the Reynolds number. A nu- 
merical integration with the same a but R 2 -- 1/25 shows that the maximum of the 
eventually damped modes has a lower amplitude and occurs at an earlier time. 

Relaxation to a layered solution is also observed with a prescribed isotropic helical 
body force, assumed to be advected by the large-scale flow in order to preserve Galilean 
invariance (see section 3.a). 

In the case of the deterministic body force (3.5), an initially three-dimensional 
large-scale perturbation evolves according to eq.(3.9) with 

1 V~-Bg-I 
T i n = T Q s = 2 ( B ~ _ V ? + I ) 2 + 4 V ?  ; TQ2=O 

n " = n ' 3 = 2 ( B [ - V ? + l ? . + 4 V ?  ; n 8 3 = n ~ + n ' '  (3.11) 
B1 B2 

E, = (B~ - V} + 1)~ + 41112 ; & = (B~ - Y~ + 1)2 + 41722 

Es = 0 ,  

where velocity and magnetic field are again measured in units of R -1 . 
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Fig. 8 : Same as Fig. 6 for body force (3.5) with cz ---- 4. 
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Figure 8 displays the magnetic and kinetic energy modes versus time for a = 4 and 
]~2 = 1/10. The details of the spectral distribution is presented in Fig.9 which shows 
the evolution of the energy of a few individual modes in the first three shells. It appears 
that  after a three-dimensional transient which takes place just after the linear phase, 
the velocity tends to zero and the magnetic field relaxes to the symmetric layered steady 
state obtained in section 3.a. 
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Fig. 9 : Same as figure 7 for body force (3.5) with a ---- 4. 

10 

A more complex evolution is seen with a = 8 (Figs. 10 and 11). Just after the 
linear phase, we observe the dominance of the modes (1, 0, 0) and (3, 0, 0). This regime 
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Fig. 1O : Same as figure 6 for body force (3.5) with ~ = 8. 

is in fact a transient and around T ~ 5, these modes rapidly decay. The system ap- 
proaches the steady symmetric solution depending only on the Z-variable discussed in 
Section 3.a. Nevertheless, three-dimensional velocity and magnetic field noises display- 
ing slowly damped regular oscillations in time, are seen to survive at a very relatively 
low level. This contrasts with the regime obtained with a = 4 and also with the case 
of isotropic body forces where three-dimensional modes rapidly tend to zero. Integra- 
tion of the eqs.(3.9)-(3.10) with the same value of c~ but R 2 = 1/25 shows the same 
qualitative behavior but indicates that  the three-dimensional components are reduced 
when the Reynolds number is decreased. Their precise dynamics is probably outside 
the scope of eq.(3.9) which is restricted to leading order in Reynolds number.  When 
keeping R 2 = 1/10, eqs.(3.9)-(3.10) are integrated with a = 16, we obtain a similar 
regime but the transient during which the solution is not dominated by the Z-modes, is 
significantly reduced. 

It is noticeable that  with all examples we have considered we never obtained a 
regime where a significant three-dimensional velocity field develops and by interacting 
with the magnetic field, leads to its saturation. Such a dynamics was studied in [23],[24] 
(see also [25]) for a large-scale velocity field resulting from a balance between the Lorentz 
force and the Coriolis force for a rotat ing fluid in a bounded domain. 



139 

o 

I 

tt~ 
I 

(~) 

? 

I 

(b) 

? 

I 

~0 

"" ~ . [  (o,o,11-i 
" ~  0,o,o)-~ 

(1 ,1 ,0) -3  
(o,i,o)-4 
(o,i,1)-o 

K = I  (i.0,t)-6 

' "  " "  "~ ~IL'~/,Y~I ,, , , ~ _ ,  " I ~ 9 , l  ~%,H: (t ~ 2)-1  
I ~ ","y ~z'o'I~-~ 

• . \  I¢'i',oI-4 
L ' ( ~ : o , o ) - , ~  - 

(1 ,0 ,2) -6  
( 0 , 2 , 0 ) - 7  

K=2  (0,2A)-B 
, ( t . 2 , o ) - B  

':(l~ " e " 

,... (~,o,31-5 
" (z,z,o)-6 

( t , 2 , 2 ) - 7  
K = 3  (3A,I)-B 

(3,o,1)-9 

5 10 15 
T 

( d )  

(e) 

I 

(f) 

Fig. 11 : Same as figure 7 for body force (3.5) with a = 8. 

'~' ~ 'I~, • :.L ',-~. ,. '..-.~..,,.' .'."'V 

' I ' I  
(1,1,0)-1 
(t,oA)-2 
(o,L0-3 
(0,1,o)-4 
(o,o,i)-5 

K = I  (1,0,o)-6 

, . p (2,1 1 ) - 1  .~ 
~ '" (2,t ,0)-2 .~ 

~I-l" ( t , l , i ) - 3  -I 
FI ( I , 0 , 2 ) - 4  -i 
FI ( 1 , 2 , 0 ) - 5  1 

o ~. (o,t,2)-e j t~ 
I ~ ( 1 , 2 , 1 ) - 7  J 

K=2 (2,0,0)-8 -I 

I 

",4 '~, 1 

I 
d I'~ "~ : ,  (0 ,1 ,3 ) -  l 

il- ' /  ~3,1,o)-2 
~i" !' (1 ,0 ,3) -3  

I ~t, (2,2,0)-4 
.~# (1,1,3)-5 
'# (3 ,0 , l ) -S  

c~ (1 ,2 ,2 ) -7  
K = 3  (2 ,0 ,2) -8  

I (2 ,1 ,2) -9  

0 5 10 15 
T 

4. C o e x i s t i n g  a l p h a  a n d  A K A  ef fec t s  in  c o n d u c t i n g  f lu ids  

A simple example of body force w, hich when stirring a conducting fluid, leads to both  a 
linear AKA instabili ty and a linear alpha instability reads: 

f l  = / cos(k0y + ~k0h) ; /2 = / cos(k0~ - ~k0h); 

fa = ( f l  + f2) + f { s i n ( k o z  - vk~ t )  - sin(k0y + v k ~ t ) } .  (4.1) 
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4.a. Layered large-scale flows and magnetic fields 
Using the same units as in Section 3, eqs. (2.3) and (2.5) become (1) 

B2 
OTB1 = --4aOZ (Bg - (V2 + 1) 2 + 1) 2 + 4(V~. + 1) 2 

B1 
OTB2 = 4aOqg ( B  2 _ (Vl - 1) 2 + 1) 2 + 4(Vl - 1) 2 

Bg - (v2 + 1) 2 - 1 
C~TV 1 : 2acgz (Bg - (V2 + 1) 2 + 1) ~ + 4(V2 + 1) 2 

0TV2 = 

+ O~B~ 

+ O~B~ 

+ 02zV1 

- ( v ~  - 1 )  ~ - 1 
2~oz (B~ - ( ~ -  1)' + 1)= + 4(Vl - 1 )~  + O~zV~" 

(4.2) 

when the large-scale velocity V and magnetic field B are again assumed 27r-periodic in 
Z. As previously the parameter a controls the number of linearly unstable and velocity 
field modes in the periodic system. 

Equations (4.2) were integrated in [18] for increasing values of a. An inverse cascade 
is always observed at early times. However: whereas in the absence of coupling with 
a velocity field, the magnetic field eventually relaxes to a steady state (Section 3.a), a 
variety of dynamical regimes (steady, periodic or chaotic) are obtained in the present 
case. 

Figure 12 displays the time evolution of magnetic and kinetic energy modes, E M = 
5[BK [ 1  2 and E v = 51 }VK[~ for various values of a corresponding to steady, periodic 
and chaotic regimes. For a = 4 (Fig. 12a), a steady regime is obtained for which the 
even modes of the magnetic field and the odd modes of the velocity vanish. In physical 
space, the magnetic field thus displays a symmetry B(Z + ~-) = - B ( Z )  and the velocity 
is ~r-periodic. For a = 10 (Fig. 12b), a periodic regime displaying simple oscillations 
is obtained. In physical space, velocity and magnetic fields show the same symmetries 
as the steady solution. Furthermore, a transient of several time units is visible between 
the linear phase and the onset of the periodic oscillations. This transient reflects the 
existence of the steady state discussed above, and becomes longer as a is closer to the 
bifurcation value which is slightly in excess of 7. 

The regime shown in Fig.12c for a = 30.5 is also strictly periodic, but significantly 
more complex: the solution displays sudden transitions between time intervals of qui- 
escent evolution and bursts of violent oscillations. For larger values of a, the solution 
loses its periodicity in time, and a transition to chaos is observed, although intervals of 
quiescent evolution still survive (Fig.12d). Note that oscillatory dynamos have also been 
discussed in the context of simple nonlinear models for solar dynamos in the presence 
of differential rotation (omega effect) ([26] and references therein). 

(1) Eq. (4.2) should replace eq.(3.2) of ref.[18] and eq.(9) of ref.[21] where a few coef- 
ficients were misprinted. 
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Fig. 12 : Evolut ion of magnetic and kinetic energy modes E ~  and E v for the body force (4.1) and 
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4.b. Three-dimensional  large-scale flows and magnetic fields 
When for the same body force (4.1) as in section 4.a, the large-scale perturbations are 
three-dimensional, the large-scale dynamics is governed by eqs.(3.9) with 

~ l l  =T~13 = 2  (172+1)  2 - B ~ + 1  
(B~ - (V2 + 1) ~ + 1) 2 + 4(V2 + 1) ~ 

( e l  - 1) ~ - B ~  + 1 
7~2~. = "R.23 = 2 ( B  ~ _ (171 - 1) 2 + 1)  2 + 4iV1 - 1) ~ 

B1 
E, = 4 ( B  ~ _ (V~ - 1)  2 + 1) 2 + 4(171 - 1)  2 

B 2  
6 = 4 (B]  _ (V, + 1)~ + 1)~ + 4(V2 + l y  

~ = 0 .  

; 9Zz2 = 0 

; R 3 3  = ~ l z  + / £ 2 1  

(4.3) 
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Fig. 13 : same as Fig. 6 for body force (4.1) with c~ = 4. 

This  sys tem was first integrated for a = 4 and R 2 = 1/10.  We observe in Figs. 
13 and 14 that after a three-dimensional transient, the velocity and the magnetic field 
relax to the steady layered solut ion discussed in Section 4.a. The magnet ic  field displays 
the symmetry B ( Z  + z') = - B ( Z )  while the velocity is z'-periodic. 
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The problem was also considered with a = 10 and the same Reynolds as above 
(Figs. 15 and 16). We observe that at the end of the integration, the solution ap-. 
proaches the layered solution described in section 4.a. A low three-dimensional back.. 
ground is nevertheless visible. At this time, both solutions are in the quasi-steady phase 
which develops before the appearence of the periodic osciUations and the onset of the 
symmetries seen at longer times in the case of the layered solution. Note that the rapid 
oscillations visible in Fig. 15, are numerical. Indeed, even when the solution is dom-- 
inantly one-dimensional, the problem is stiff because the large coefficients multiplying 
direct couplings such as advection and Lorentz force. 
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To conclude this section, we stress that for initially three-dimensional large-scale 
perturbation, the velocity of the secondary flow is significantly larger in the case of 
coexisting alpha and AKA instabilities than in the case of pure AKA effect. 

5. S u m m a r y  

In contrast with instabilities driven by a negative eddy viscosity, both AKA and alpha 
effects can develop in low Reynolds number flows, provided the system is sufficiently 
extended. It follows that the large-scale dynamics can be computed for a large class of 
body forces stirring the basic flow. Although the AKA instability refers to the ampli- 
fications of a seed large-scale velocity, while the alpha instability produces a dynamo, 
these phenomena display similar properties in the case where the large-scale perturba- 
tions depend on a unique space coordinate. Due the existence of a sequence of cellular 
steady solutions which are unstable to large-scale perturbations, the nonlinear dynam- 
ics is dominated by an inverse cascade leading to the formation of strongly energetic 
structures of larger and larger scales, up to the limits of the system. Furthermore, when 
both instabilities are present, their coupling can lead to various time-dependent regimes 
where velocity and magnetic field can display periodic or chaotic oscillations. 

The nonlinear dynamics of the AKA instability is however significantly modified 
when the large-scale initial perturbation is genuinely three-dimensional. Self-advection 
of the large-scale flow is the dominant nonlinearity and it limits the growth of the 
secondary flow to a relatively low level. An inverse cascade nevertheless develops, leading 
to a three-dimensional flow dominated by the largest scales. 

The situation is different for the alpha dynamo. The Lorentz force does not pro- 
duce a significant large-scale flow and one-dimensional solutions are generally dynami- 
cally stable. This observation provides a basis to various alpha dynamo models, often 
constructed in an astrophysical context, where the nonlinear saturation is mainly due to 
the decay of the effective alpha coefficient with the intensity of the large-scale magnetic 
field [15], [17]. 
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1. In t roduc t ion :  The intermittency phenomenon  in particle physics 
Intermittency has been first invoked in Particle Physics in the study[1]of dynamiced 

fluctuations observed in the particle density distribution in small intervals (bins) in rela- 
tivistic phase-space variables. These fluctuations have been called dynamical by contrast 
with the purely s~atis~ical ones due to the limited (often small) number of particles regis- 
tered in small bins. Indeed, current high-energy collisions produce dozens to hundreds of 
particles per event, which is large considered by particle physics standards but is rather 
few for applying statistical concepts, such as intermittency, without care. Hence, the first 
step of ref. [1] was to propose a method for distinguishing dynamical fluctuations from 
the statisticad "noise". Assuming a simple Poissonian noise, or Bernouilli one if the total 
multiplicity of events is constrained, one can write a formula for the normalised factorial 
moments of the multiplicity distribution, namely: 

(kin (kin - 1)... (k~ - q + I)) (p~) 
(Fq) - (kin) q = (pro)-----V, (I) 

where km is the observed number of particles in the bin [m] and the "density" prn , with its 
"ordinary" moments, would correspond to the absence of statistical bias. This is nothing 
other than a simple application of the difference between frequency and probability weight 
in Statistics. The assumption about the noise has been surprisingly wel adapted to the 
study of various reactions [~] , such as c + -c-annihilations into hadrons and those involving 
incident hadrons and/or nuclei. In all cases, realistic models except for eventual dynamical 
fluctuations were found consistent with the noise assumption. 

The main yet unexpected outcome of these studies is the power-law behaviour of 
moments with the binsize 6 in the suitable variables, namely the rapidity in the standard 
case displayed on the Figure 1. Rapidity[3lis the variable analoguous to the velocity in a 
relativistic (Lorentzian) frame of reference oriented along the preferred production axis. 
It is related to the angular distribution of particles with respect to the axis in the total 
center-of-mass frame. One finds: 

(Fq) ~ 6-f, (2) 

where fq is constant in some binsize range. In fact the inverse binsizc 6 -1 is a measure of 
the chosen experimental resolution. Note that other variables, such as the azimuthal angle 
with respect to the axis, has revealed the same behaviour, and it is even more pronounced, 
in a two or three-dimensional analysis [4] combining these variables. As we shall develop 
further on, formula (2) was suggestive of a fractal behaviour of fluctuations similar to fluid 
turbulence and related to intcrmittency, i.e. the property of dynamical fluctuations with 
a hierarchy of scales, showing a fractal dependence on the experimental resolution. 

In the next section 2, wc show how the quantum field theory of particle interactions 
is put into question by the intermittency phenomenon, impredictably. In section 3, one 
introduces the random cascading models by analogy with fluid turbulence, but with some 
clear difference due to relativistic kinematics. Section 4 discusses the connections with 
phase transitions and also spin-glass systems using the fruitful example of Statistical Me- 
chanics. Section 5 is devoted to the unexpected relations with fractal growth, aggregation 
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processes, and the non-linear Smoluchowski equation. Conclusions and outlook are given 
in section 6. 

It must be clear to the reader that the following sections mainly reflect our personal 
views, much influenced of course by the numerous friends and colleagues with whom the 
author shares the passion for the present subject, and whose names can be found in part 
in the references list. It is a pleasure to have been invited to talk at the workshop since it 
allows one to be less rigorous but perhaps more intuitive than for a registered paper. I also 
took this opportunity to add new pieces of material concerning aggregation phenomena 
which seem to fit well the subject of the workshop. Many thanks for the organizers of this 
nice interdisciplinary meeting. 

2. Intermittency and the quantum field theory of  particles. 

The experimentally observed behaviour compatible with (2) has been largely com- 
mented in the theoretical literature Is] . So-called "conventional" mechanisms have been 
proposed to take into account the behaviour (2) while using already known models. De- 
pending on the reaction, short-range and/or long-range rapidity correlations, a hierarchy 
of resonance decays, and the Bose-Einstein enhancement effect for identical pions, have 
been invoked [51. However the higher-dimensional analysis [41 is difficult to explain in this 
context and the "universal" presence of the phenomenon is difficult to understand, since, 
"conventionnally", different mechanisms are to be introduced for different reactions. How- 
ever a "conventional" model is not completely excluded but, as we shall see now, this is 
another way to formulate our ignorance of quantum fields at strong coupling. 

Particle interactions are expected to be well-described by quantum field theories. In- 
deed the so-called "standard model" of fundamental interactions has met considerable 
success in the unified description of electro-magnetic interactions. In the domain of strong 
interactions, the success is also remarkable with the important restriction that the theory 
remains incomplete: at short time-distances the interactions between quarks and gluons 
_ the fundamental building blocks of matter or p a t r o n s  _ is well understood; However at 
longer distances the transformation of quarks and gluons into the observed hadrons (pions, 
nucleons, resonances etc..) is rather problematic. Technically, the difficulty is in treating 
the strong coupling regime of Quantum-Chromo-Dynamics (QCD), the interaction theory 
of quarks and gluons. Most probably, the difficulty is basic and related to the problem 
of c o n f i n e m e n t ,  that is the formulation of a theory where the objects existing at short 
distances are not the asymptotic particles, the hadrons, which posess a complex composite 
structure in terms of partons. 

The relation of the intermittency phenomenon with QCD has naturally been a con- 
stant subject of interest. Even if the only strict theoretical understanding of strong interac- 
tions is given by the week coupling limit of QCD, that is the short-distance behaviour, it is 
interesting to adopt first this framework. Two ways have been investigated; One is to look 
for an eventual intermittent behaviour of the interaction of quarks and gluons; Another 
one is to add to the parton-interaction stage a phenomenological description of a second 
"hadronisation" stage and compare the results of the simulation to the experimental data 
on factorial models. Both ways have led to interesting results showing better the limitation 
between the known and the unknown in QCD. 
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Interestingly enough, it has been known since a long time Is] that QCD admits a hier- 
archical solution at short-distances, under the form of a parton cascading structure[el, at 
least for quark and glu jets produced e.g. in e+e-reactions. However, while the fractal 
character of this process was noticed [7] early, its intermittency properties have only recently 
been numerically proven[S]. On a more phenomenological ground, a reasonably good de- 
scription of the observed factorial moments has been obtained for Monte-Carlo simulations 
based on the Lund Model for LEP data [9] on quark jets, where the large production of the 
famous intermediate boson Z°and its decay into quark jets allows a detailed analysis. It is 
to be noticed that the underlying mechanism of the appropriate Lund Model is based on 
the QCD cascading structure. For all other reactions, for which the first quark-gluon cas- 
cading stage is not proven to exist, no satisfactory simulation including factorial moments 
has been found so far. 

These facts, together with the unresolved problem of the confinment of quark and 
gluon jets, points towards the long-lasting problem of quantum field theory at strong 
coupling. Indeed it is known from renormalization group properties of QCD that this 
theory is asymptotically free, that is its effective coupling is weak at small distances and 
becomes strong at long distances, precisely the region where hadrons are formed. Hence, 
the observed intermittency pattern gives a new angle of attack for the strong coupling 
problem. 

3. Turbulence  and r a n d o m  cascading models of particle production 

Fluctuation structures leading to the power-law (2), section 2, is not unknown in 
Physics. In fully-developed turbulence, as observed in fluids, moments of the eddy velocity 
distribution are compatible with such a behaviour up to high values of the rank q. One 
finds general models 11°] of cascading which fulfill relation (2) with a phase-space bin 
corresponding to small volumes of the fluid. This is very different from the intermittency 
for particles, which is present in momentum space and not in coordinate space. Moreover, 
the problem of statistical noise, as mentionned in introduction, is very different. However 
the structure of the cascading models of refs. [10] can be adapted to the case of particles 
and transposed in the appropriate relativistic kinematics. 

Let us introduce the specific a-models, introduced by D. Schertzer and S. Lovejoy,(see 
the third ref. [10]), in atmospheric turbulence and considered in ref. [1] in the context of 
particle physics. Following the scheme of Fig. 2, one considers a series of cascading steps 
n, ranging from 1 to v, each of them corresponding to a new A-partition of phase-space (A 
is 2, for simplicity, on the Fig.). In this way, one establishes a correspondence between the 
value of v and the desired binning resolution ~ , where 6 is as previously the smaller bin 
unit and A, the larger one. One has the identities: 

A 
_ ~v = M (3) 

where M is the total number of bins. Let assume that at each step n, density fluctuations 
may occur and are represented by random factors W for each link of the tree structure 
(see Fig. 2); One gets after v steps, for the bin Ira] : 
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- . = a  

,-{w, t 
(4) 

where one has used the mutual independance of the random factors W, and of their nor- 
malization conditions {W} = {1} = 1, the brackets{} meaning the averaging over the 
distribution of W's. Using expression (1) for the factorial moments one gets the required 
relation (2) with: 

{w,} (5) 
fq = In)~ 

where the exponent fq has been called the "intermitteney index of rank q" and is related 
in this model to the local probability distribution of the density fluctuations in rapidity. 

In fact, random cascading models can be shown [a] to be consistent with the relativistic 
kinematic constraints on particle collisions. After the collision between initial particles, 
the produced "medium", whatever it is, is subjected to the Lorentz expansion of distances 
and times of interaction. When this expansion reaches the canonical correlation length 
of 1 fermi (10-13cm.), the system breaks into pieces and dynamical fluctuations can be 
generated and persist, since they cannot be destroyed by re-interaction. However, contrary 
to the conventional picture in which the finally observed hadrons are all created at this 
length scale (see Fig. 3a), the intermittency phenomenon implies a self-similar process: 
the system develops further on in time and undergoes, after some expansion time, a new 
breaking into pieces, with new fluctuations superimposed onto the old ones, and again 
expands etc..., see Fig. 3b. In fact, the 1-fermi scale remains the basic length, not as the 
absolute scale of hadron production as in the conventional picture, but as the average scale 
of dynamical fluctuations and the intrinsic repetition scale of the hierarchical fluctuation 
pattern. On average, the intermediate system lasts 1 fermi, but from event-to-event or 
inside the same event, its time-life may vary considerably, generating self-similarity. 

Then, as a particle collision, considering its space-time development, the process is 
compatible with the random geometrical structure of cascading, as schematized in Fig.2. 
However, the intermittency structure is observed in the short range of momentum space 
and thus cannot find any justification from fluid turbulence theory, where the intermittent 
structuration appears in coordinate space; One has to find the appropriate theoretical 
approach. Statistical Mechanics, as often in field theory, is of great help, as discussed in 
the next section. 

4. Phase  t ransi t ions,  Spin-Glasses and r andom cascading 

Whilst trying to understand the intermittency mechanism in terms of quantum field 
theory at strong coupling, it is natural to address the same question to spin systems, in 
particular, when they posess a phase transition. Indeed, it is known that the behaviour 
of spin systems at a second-order phase transition point, that is when the correlation 
length diverges, is related by a scale transformation to a quantum field theory In]. As an 
application of the factorial moment method, intermittency patterns have been searched 
for in numerical simulations of the 2-dimensional Ising system near its (pseudo-)phase 
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transition coupling. The idea [I~1 is to consider the subdivisions of the Ising lattice as the 
bins of Fig.2. In each "box" in the lattice corresponds a bin [m], and the number Km , 
cf. definition (1), is taken to be the number of spins with same orientation (a magnetic 
cluster). 

One important point of interest of these statistical systems is that the assumptions 
about the "noise" and analytic predictions for the behaviour of moments can be con- 
fronted with accurate computer simulations [nj. Intermittency structuration has indeed 
been clearly seen and the scaling properties of a 2 "d order phase transition lead to a 
specific prediction for the intermittency indices (5), namely 

A = (q-  1)b (6) 

where b is independent of q and related {131 to the critical indices of the relevant spin 
Hamiltonian. However, ambiguities seem to persist concerning the last point. While one 
expected [13] t find b = ~ from the Ising Hamiltonian, the remark was made[14]that the 
result seems to be dependent of the definition of clusters. For connected (percolation) 
clusters, one would find a Ports Hamiltonian and the value [141 /~ = ~ which happens to 

be confirmed by recent simulations [15]. In fact, the problem remain open, not forgetting 
its extension to other second-order transitions or, more importantly for particle physics, 
to a first-order phase transition such as the one predicted for QCD at high temperature. 

In fact, formula (6) can also be expressed as[16] the existence of a fixed fractal dimen- 
s ion/~ of the strucure of fluctuations. This property is specific to a phase transition at 
equilibrium. However, collision processes, except eventually heavy-ion collisions, are prob- 
ably far from equilibrium. Thus it is thus important to consider other theoretical schemes, 
which may lead to fractal dimensions b depending of q, and are known as multi-fractal 
systems. This is generally the case of random cascading as presented in the previous sec- 
tion (D = ~/--~T, see formula 4.) It was found that [17] the relevant statistical systems possess 
a spin-glass structure, that is spin systems with quenched random interactions instead of 
deterministic ones as in the case of the first lattice problems considered. 

One may introduce the concept of a Partition Function Z by summation of density 
powers over all bins of same width 6. For random cascading models of the type of Fig. 2, 
one finds: 

= e = p  (7 )  
m=l m=l .=I / 

where the substitution ezp ( - f i e , )  ~ (w)q  using the same definition of p,, as in formula 
(4), allows one to identify e, as a random energy level and q ..~ ~ as the inverse temperature 
of the spin-glass system [17]. In such a way the identification is proven with the Generalized 
Energy Spin Models [lsl. Among the interesting consequences of this identification, one may 
quote a non-trivial pattern[ 19] of phase transitions leading to a hierarchical structure very 
different from the usual order-disorder transition. There exists a breaking of ergodicity at 
low temperature (high fl), and a specific classification of the multi-fractal spectrum [19]. 
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The interpretation of this phase transition in the context of Particle Physics is under 
study. However, no Lagrangian or Hamiltonian formulation exists for these systems and 
the explicit formulation in terms of a field theory appears to be difficult. In fact, one 
recently found that the link with quantum field theory could be made easier using the 
emergence of an underlying non-linear equation which is discussed in the next section. 

5. Fractal  growth,  aggregates and r andom cascading equations 

Among the unexpected connections between random cascading models of particle 
production and Statistical Physics, last but not least is the relation with the Physics of 
aggregation and gelling via the well-known Smoluchowski's formulation [2°] , leading to non- 
linear rate equations. It is well known that these equations were originally proposed for 
the description of the coagulation of colloids submitted to Brownian motion more than 74 
years ago. However, quite recently, these equations met a revived interest in the numerous 
studies on the fractal growth, in particular for cluster-cluster aggregation [21]. 

In all these studies, the number N of clusters of a given number k of mass units is 
followed as a function of time. One writes a very general mean-field equation (the effect 
of spatial fluctuations of Nk being neglected) for the aggregation rate, namely: 

dNk 

i + 2 = k  i 

where the fusion weights K ii are the dynamical input. Eqn. (8) establishes the balance 
at each time and for each mass k between clusters aggregating to form the mass k and 
clusters of mass k transferred to higher mass, by aggregation. 

The way the connection is made [22] with random cascading is through the derivation 
of a non-linear equation for the Partition Function of random cascading, see (7) and an 
appropriate transformation of the Smoluchowski equation. In fact one can show that the 
following two generating functionals verify the same equation: ~ for aggregation and 7"[ 
for the partition function Z, defined as follows: 

1 

(1 ' ( I -" ' ) 'E ,N ,  = 

I 

Z 
(9) 

where "P(Z) is the Z probability distribution, computable for random cascading models 
One finds the same non-linear equation, namely: 

d~  
d---; = • 7-t - ( 1 0 )  

where v = In [~-~-t Nt[ can be identified with the generation number of random cascading, 
see section 3, and the convolution * is defined in terms of the fusion coefficients K q[22]. In 
the case of "multiplieative" aggregation, with K ij = K i K  j , one finds a random-branching 
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random cascading model, while the "monodisperse" aggregation case[211 with discrete time 
intervals gives back the random cascading models already discussed. 

The identity of the equations does not mean identity of the solutions, due to possible 
different initial conditions. In the first investigations of this problem, it seems that the 
so-called "scaling" solutions of the Smoluchowski equation, which can be derived in a quite 
general way[ 231 , lead to interesting solutions for the Partition Function of random cascading 
with asymptotic freedom properties and intermittency. It appears that the world of these 
non-linear equations has not revealed all its secrets! 

6. Conclusions and future  prospec ts  

Intermittency in Particle Physics has revealed a quite fructuous field of research. 
In fact, the study of fluctuations has always led to an interesting insight on physical 
phenomena. The study of these fluctuations in particle physics is at a very early stage and 
one does not yet possess a complete picture of its properties. Much more experimental 
work and critical comparisons with existing models are needed; However it is already 
possible to guess that a better understanding of these patterns of fluctuations, combined 
with the already known facts about the different distributions of particles in high-energy 
experiments may lead to a deeper yew on subnuclear physics. Fractals and Chaos have 
probably something to teach us about quantum field theory and elementary particles. 

On the other hand, there is a hope that the field theoretical techniques developed in 
particle physics and briefly described in the present talk could be useful in other domains 
where the problem and structures of intermittency appear. For instance the combination of 
the "local" study of fluctuations in phase-space with the "global" thermodynamical appa- 
ratus related to the partition functions of spin systems could be useful in many problems. 
As an unexpected example, the intermittency analysis in terms of factorial moments in 
relation with percolation models has been shown[241to be relevant in the study of nuclear 
multi-fragmentation. Perhaps the long-standing respectable unsolved problem of fluid tur- 
bulence itself, could benefit from some ideas, as a return gift from particle physics which 
seems to have taken interest in methods inspired by turbulence! 
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F I G U R E  C A P T I O N S  

Figure 1 : Intermitteney: first example 
a) Particle number distribution 
observed by the JACEE Collaboration for a 5 Tev/nucleon, Si + Ag(Br) cosmic-ray col- 
lision on an emulsion plate carried by a balloon [~5]. Cosmic-rays provide the only oppor- 
tunity at present to reach very large energies, and thus high multiplicity-per-event. The 
next generation of accelerators(LHC at CERN, SSC in Texas), will allow to reach such 
energies but in a reproducible and controlable way. 
b) Factor/a/moment of rank 5. 
The factorial moment obtained from Fig. la  (black dots) is compared with a simula- 
tion with Gaussian statistical noise (crosses). The straightline is a typical prediction for 
intermittent pattern of fluctuations. The Figure is from ref [1]. 
c)Intermittency at accelerator. The factorial moments of rank 2 and 4 are displayed (black 
squares) and compared with a simulation with only statistical fluctuations (white squares) 
for an 160 - emulsion experiment at CERN.This reaction is very similar to the previous 
one, but at smaller energy, with much less particle produced (around 120, compared to 
more than 1000). The straight lines correspond to the intermittency prediction. These 
results [26] were the first ones published showing that the methods of factorial moments 
was applicable at present accelerator energies (with moderate multiplicity-per-event), as 
proposed shortly before [271, and led to intermittency-like fluctuations very similar to the 
cosmic-ray event. 
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Figure 2 : R a n d o m  cascading  m o d e l  of  i n t e r m i t t e n c y  

The figure represents three stages of realization of a random cascading process. 
a) The  tree structure o f  the model  
at each step n the branches of the tree are subdivided into Alinks. For a given resolution, 
i.e a given total number of steps u, there is a one-to-one correspondence between a "box 
[m]" in the phase space and a series of integers {al ,  a 2 , "  ", a~}. In the example we have 
chosen A = 2, g = 4. 
b) The  "Rapidi ty-box" representation of the a-model  
of intermittency. For each box of this diagram, one chooses a random factor W(a).  In each 
box, the sign " q- " or " " represents the enhancement (resp. damping) density factor of 
an a - model  (see text). The final density p,, of states in the box [m] is the product of 
the factors W W (a2) ..-, W 
c) The "event". 
The fluctuation pattern obtained after y steps is displayed, following the random values 
attributed to the boxes of Fig. b). 

Figure 3 : Space - t lme  r ep re sen ta t i on  of  i n t e r m i t t e n t  f luc tua t ions  

This figure shows the space-time relativistic Lorentz frame in which a particle collision takes 
place, at least when projected on the (t, z)plane, where t is the time and z the longitudinal 
distance. The causal conus (t 2 - z 2 ~ 0, t > 0 ), the region where particles propagate, is 
dispayed in both figures, together with the causal hyperbolae, r = ~ - z 2 = cste, t>0, 
which are the curves of same proper-time, that is which correspond to simultaneity in the 
intrinsic frame of reference. The figures are from A. Bialas' review, see refs. [5]. 
a)l.n-out conventional picture o f  hadron production 
The figure shows the conventional picture of hadron production after a high-energy col- 
lision. At the origin (O) an interacting "piece" of partonic or hadronic matter (hatched 
region) is created. After a proper time duration r of order I fermi (10-13cm) of relativistic 
expansion, the "piece" breaks into new pieces of size (on average)equal to the conventional 
correlation length ~, giving rise to dynamically independent hadrons. The only scale in 
the problem is r ~, ~ ,,, 1 in fermi units where the speed of light is unity. 
b) R a n d o m  cascading in space-time 
In the (1 + 1)space-time frame, Fig. 3b shows the (random) generation of intermittent 
fluctuations following the geometrical structure of the a-models, but satisfying the con- 
straints of Lorentzian relativistics kinematics. In fact, at each step of the cascade, one 
iterates the individual process shown in Fig. 3a. A piece of partonic or hadronic matter is 
locally streched by the relativistic expansion to a length larger than ~, and breaks into A 
new pieces, with each a new value of the density, due to an additional random factor W. 
Appearing at successive proper time values v,,  the fluctuations lead to the superposition 
of structures at different rapidity scales of size 6y ,,, ( / vn .  In the figure, one has chosen 
for simplicity sake, A = 2, r ,  = 2 n, and random factors W+and W- as in Fig. 2. 
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Hot QCD 
and the quark-gluon plasma 

Miche l  Le Be l l ac  

Institut Non Lin~aire de Nice*, Universit~ de Nice 
Parc Valrose, 06034 Nice Cedex, France 

A b s t r a c t  

We review recent developments in the physics of the quaxk-gluon plasma. After giving a 
short account of results in lattice QCD at finite temperature,  we describe briefly the Feynman 
rule at nonzero T. Then we discuss the spectrum of collective excitations (quasiparticles) in 
the quark-gluon plasma: fermionic as well as gluonic excitations. Finally we explain how a 
resummation method due to Braaten and Pisa~ski allows to deal with some infrared problems 
of perturbat ive QCD at finite temperature. As an application we show how one solves the 
so-called "plasmon puzzle". 

* Unit~ Mixte de Recherche 129 du CNRS 
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1. I n t r o d u c t i o n  

The main motivation for being interested today in finite temperature  QCD (and more 
generally in finite temperature  quantum field theory (FTQFT) )  is the Strong belief that 
we might be able to produce a deconfined state of mat ter  in laboratory experiments. At 
sufficiently high temperatures or densities, quarks and gluons are no more confined into 
hadrons, and constitute what has been called a "quark-gluon plasma". This quark-gluon 
plasma was present in the early Universe up to times N 10-Ss, but  it is not easy to find 
observable consequences of this fact, while it may be possible (although not so easy!) to 
detect signals of a quark-gluon plasma created in the laboratory by heavy-ion collisions[I]. 

The main basis for our belief in this new phase of mat ter  comes from lattice simulations. 
In the case of a pure SU(3) gauge theory, experts now agree that  they observe a first-order 
deconfinement phase transit ion at a temperature Te ~-230 MeV[2]. The character (and even 
the existence) of the transition depends in a complicated way on the number of fiavours 
and the masses of the quarks, and the situation does not seem to be fully settled in lattice 
simulations. In the realistic case of two light quarks and one heavy quark (u, d, and s 
fiavours), results are consistent with a first-order transition, corresponding to chiral symmetry 
restoration and deconfinement, at a critical temperature Tc - 150 MeV. 

In order to express Tc in MeV, one has to make a comparison with another prediction. 
In general the comparison is made with the calculation of the p-mass, rap, and the quoted 
values for Tc have been given with that  choice. Unfortunately the m,/mp ratio has not yet 
reached its physical value in latt ice calculations, so that  it is reasonable to allow for a rather 
large error bar  on T¢; we shall take as a conservative estimate T¢ in the range 150-200 MeV. 

Another estimate of the critical temperature comes from low energy effective Lagrangians. 
The quark condensate can be computed in perturbat ion theory and its low temperature ex- 
pansion is given by[3] 

I T  ~ T a T6 Aq ) 
< qq >T = <  qq >T=0 1 8F  2 384F a 288F-------- ~ ln-~-  + O(T s) (1.1) 

For simplicity the formula has been written for massless quarks. The parameter  F is closely 
related to the pion decay constant f~ and Aq to the 7r - r scattering lengths; their numerical 
values ~re 

F = (1.057 4- 0.012)f,  = 88.3 4- 11 MeV ; Aq = 470 4- 110 MeV 

The scMe of the low temperature expansion is set by v ~ F  - 250 MeV and the expansion 
seems to be reliable up to T ~ 150 MeV. A tempting (but bold ) extrapolat ion to higher 
values of T leads to a vanishing condensate at Tc '~ 190 MeV. Various corrections (massive 
quarks and massive hadrons) do not modify this estimate in an essential way. 

At temperatures much higher than To, one expects the quark-gluon plasma to behave 
almost as an ideal gas of free quarks and gluons: indeed, because of asymptotic freedom, the 
QCD coupling constant g(T) tends to zero when T goes to ilffinity. As T is the only scale at 
our disposal we must have 

as(T)-  g~(T) _ 6~ 1 (1.2) 
4w (33 - 2Nf)ln(cT/A'-M--#) "= 8w/~0 ln(cT/A'D-y) 

the constant c being unknown at present ; as usual fl0 denotes the first coci~cient of the fl- 
function and A~--~ the QCD scale in the MS renormalization scheme. In the limit of infinite 
temperature,  we thus get the Stefan-Boltzmann (SB) law for the energy density 
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~ ( h r 2  7 4 (1.3) 
c s ~  = 1 5 "  c - 1 + ~ g g v s ) T  

where Nc is the number of colours and N I the number of flavours. In order to get an order 
of magnitude est imate of the energy density around To, we simply plug in (1.3) the value of 
the critical temperature and find 

__ 1.0 GeV/(fm) 3 T¢ = 150 MeV 

-- 3.3 GeV/(fm) 3 T~ -- 200 MeV 

The other extreme way of reaching the chirally symmetric phase is to increase the bary- 
onic density, and thus the chemical potential # at small values of T; for simplicity we take 
T = 0. Recall that  the nuclear density do - 0.15 nucleon/(fm) 3, and that  the chemical 
potential  # is given from do by 

2 2 do = ~ ( p  - m 2) (1.4) 

where m is the nucleon mass. Unfortunately the region T = 0, # increasing, is not accessible 
to present latt ice calculations. In order to estimate the critical chemical potential  Pc, one has 
to rely on the bag model or on effective chiral Lagrangians[4]. It is likely that  a transition 
occurs at a density ,-, 4 - 5 times the nuclear density; taking into account (1.4) and the fact 
that  the quark chemical potential #q --- p /3  at the transition, this corresponds to pq _~ 300 
MeV. Thus we can guess that  the phase diagram is roughly that  drawn in rigA. However 
we must stress that  the exact shape of the curve in fig.l,  as well as the character of the 
transit ion for # ¢ 0, are still very uncertain. Let us only mention that  the situation with 
T -- 0 and d -~ 5d0 could be reached in the core of some neutron stars, which could thus 
contain a quark-gluon plasma. 

Let us come back to the case # = 0 and to the results of latt ice calculations; one of the 
best signals of a first-order phase transition is the jump of the energy density e at T~ (fig.2). 
Above To, it is interesting to compare lattice results with those of perturbat ive calculations, 
since for T >> T¢ we expect the SB-law to hold. We can even do a little bet ter  since the 
perturbat ive corrections to the SB-law have been evaluated; one finds for N~ = 3 

~/T4 8~r2 7~2_ 1 5 2 _ ~  1 = - ~  + - ~ I V  I - (-~ + -~g l )g  + (1.+ g l )  s/2 + ... (1.5) 

Notice the term of order gS, and not g4, as could be expected from a perturbative 
expansion. This feature arises from the infrared behaviour of any (renormalizable) relativistic 
thermal field theory and is not typical of QCD; it happens for instance in the case of the 7~ 4 
scalar field theory. Infrared divergent terms are resummed in the so-called "ring-diagrams" 
(see subsection 4.1). Terms of order g41ng2 have also been computed, but they are not 
meaningful in the absence of a complete O(g 4) calculation. 

It is interesting to see how far down in T one can extrapolate the perturbatively corrected 
SB-law (1.5); however it is necessary to correct first (1.5) , which is a continuum formula, for 
latt ice effects. In other words one has to make the comparison with a perturbat ive calculation 
on the lattice. Such a calculation has been performed[5] and one can see on fig.2 that  there 
is a very good agreement between the lattice simulations and the perturbat ive calculation 
down to T/T¢ ~- 1.2. However the situation does not look so bright when one examines the 
pressure P .  In an ideal ultrarelativistic gas one should have ~ = 3P; the ratio (e - 3P)/T 4 is 
shown in fig.3[6], and one can see that  there are certainly strong non-perturbative effects up 
to T/T~ _~ 2. In (continuum) pertm-bation theory the leading contribution to (6 - 3P)/T 4 is 
of order g4 
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2 4 1 
(~ - 3P) IT  a = - - ~ f l o g  (-~ 4- 5 Nf )  4- O(g 5) (1.6) 

and this has the wrong sign if compared to lattice results. 

Another physically meaningful quantity is the Debye screening length rD, or its inverse 
the electric mass reel (m¢~ = to1), which governs the screening of the heavy quark potential 
above To. One expects this potential to be given by 

V ( r , T ) -  as (T)  4- ra(T)  T < T c  
r 

V(r ,T )  - T a s ( T )  e-~(T)r-t-c(T) T > Tc 

with n _~ 2 and # _~ 2me~ for T >> T¢. One finds on the lattice in pure SU(3) 

(1.7) 

t~(T)/T N 2 - 3 for Tc _< T <_ 2To (1.8) 

while perturbation theory (subsection 3.4) gives 

1 T2 (1.9) m~(T) ~ ( _,Vo + ~N~.) g2(T) 

With g(T) ,,, t,  there is rough agreement between the lattice and perturbative calculations. 

Thus our motivation for studying the perturbative aspects of F T Q F T  is that perturbation 
theory seems to be a good approximation for T/Tc >_ 2, and might even be a good qualitative 
guide for lower values of this ratio. In any case, comparison with lattice results, and matching 
of these results with the perturbative ones around T -~ 2Tc may give useful indications on 
the behaviour of the quark-gluon plasma, and in particular may give useful hints on the 
non-perturbative effects which occur at lower values of T/Tc. 

2. F e y n m a n  rules  at finite t e m p e r a t u r e  

We shall limit ourselves to a brief account of Feynman rules at finite temperature and 
refer to [7], [8] or [9] for a detailed derivation of these roles. 

2.1 F e y n m a n  rules  in i m a g i n a r y  t ime .  

The formalism of FTQFT relies on a formal analogy between inverse temperature and 
imaginary time. The imaginary time r = it varies in the range [0, fl], where fl = l I T  (Fig.4). 
Because average values in statistical mechanics are calculated from a trace, the fields must be 
periodic (antiperiodic for fermions) in imaginary time with period ft. Thus the most natural 
formalism in F T Q F T  is the so-called "imaginary-time formalism", or equivalently "Matsubara 
formalism". Because of periodicity in imaginary time, the energies (or frequencies) can take 
only discrete values, called "Matsubara frequencies" 

27rn 
w. = ~ (2.1) 

Then the expression for the (free=F) propagator is 

1 1 
AF(p) ----- AF(iWa'P~ = w~ 4- ~ 4- rn 2 -- w2. 4-w~ (2.2) 
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This expression is quite analogous to that of the propagator of an Euclidean T = 0 field 
theory, except that iwn = P4 is restricted to discrete values. Because of this, in a loop 
integral f dp4 will be replaced by a sum over w, : 

f d'p ..-, T E f d3p (2.3) 
n (2r)3 

The rules for the vertices are the same as those of the Euclidean T = 0 field theory[8]; they 
can be easily deduced from a path-integral formalism for the correlation functions at finite 
temperature. For example in a g2~, scalar theory (the use of g2 for the coupling constant, 
rather than g, allows a convenient comparison with other field theories), to each vertex will be 
associated a factor _g2. For particles of spin 1/2 and for gauge particles, the spin structure 
of the propagator will be taken from the Euclidean T = 0 field theory. 

In order to illustrate these rules, let us work out a simple example : the tadpole in g2~a4 
(fig.5) 

g2T ~ / d~p 1 (2.4) 
II = - ~ -  (2~) 3 ~ + ~ + m2 

The standard trick, in order to perform the summation over n in (2.4) is to use a contour 
integral (fig.6) 

T fo ~ flPo (2.5) T f(Po = iw,) = ~ dp0f(P0)~ coth 2 
n ~ o o  

which is valid provided f(Po) has no singularities on the imaginary axis. After some simple 
algebra one finds 

- ' ~ ' 1 / ~ : d p 0 1  1 / c  
2i7r (f(Po) + f(--Po)) + ~ dpo(f(po) + f ( - P ° ) ) ' e # P : -  1 

2 

(2.6) 

This allows to separate II into a vacuum part, II~,c, and a thermal part  II# ; using the explicit 
value of f(po) : 

I 2 _____ ~2 .[_ m2 ](po) - ~ _ p ~  ~p 

we get : 
g2 f d4p 1 

II~oo = 7 _ (2~), p,~ + p~ + m 2 (2.7) 

g2 / dap 1 
H# = T _ (2~)3 wp(e~p - 1) (2.8) 

II~.c is of course divergent, but this divergence will be taken care of by the usual T = 0 
renormalization, while II~ is easily evaluated for T >> m: 

g2T2 - 5m~ (2.9) 
I I ~ -  24 

Equation (2.9) shows that in a thermal bath, massless particles acquire a mass of order gT. 

Instead of using the contour integration technique, it may be more elegant to start  from 
a mixed representation of the propagator (2.2). We define the Fourier transform in imaginary 
time through 
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1 fo # dreiOJ.rAF(r,p_ ) av( i~ . ,p3  - ~= + ~  +m= - 

and it is straightforward to check that  A~(r,p-) is given by 

(2.1o) 

1 
n F ( ~ , ~  = ~-7[(1 + ~ . ( ~ ) ) e  -~'~ + ~ . ( ~ ) e  ~ 1  (2.11) 

where the Bose-Einstein distribution nB(X ) is defined by 

n . ( . )  = (e~l~l - 1) -~ (2.12) 

Using this representation of AF(iwn, p') allows to perform easily the sum over n. For 
example for the graph of fig.7 we have : 

(2.1a) 

This formula gives automatically the correct continuation to real energies. However there 
is a tricky point in more complicated loop calculations : if an integration variable does not 
belong to the interval [0, fl], one has to extend (2.11) by enforcing the periodicity condition 
on the r-dependence of the propagator.  

2.2 R e a l  t i m e  f o r m a l i s m  

Instead of imaginary time, it is also possible to work directly with a real t ime formalism, 
as at T = 0. The form of the propagator in real t ime was first worked out by Dolan and 
Jackiw[lO] 

i 
DF(p) = p2 _ m2 ..[_ ie -1- 2rrnB(P° )5(P2 - m2) (2.14) 

One might hope that  it would be enough to take the T = 0 Feynman rules and use the 
real-time propagator  (2.14) in order to compute in per turbat ion theory at T # 0. Unfor- 
tunately this is not the whole story: when one wants to write Feynman rules for reai-time 
Green's functions, naanely for Green's functions whose time-arguments are real, one runs into 
problems[9]. Let us assume that  we want to compute 

D(=, y) = zTKe-~"T(~(=)V(y)))  (2.15) 

where the times x ° and y0 are real. The problem is that  x ° and y0 belong to the real axis, 
and if we want to write a path-integral,  we know that  if the initial t ime is ti ,  the final time 
must be ti - i l l  We have thus to choose a t ime-path start ing from some time ti, which goes 
through x ° and y0, and lands into ti - ifl. Taking into account the domain of definition of 
D+ and D_,  we see that  the imaginary part  of t must be non-increasing along the contour 
(fig.8). The s tandard choice is that  of fig.9 , with ti -+ - c o  and t I -+ +co. This leads to 
a doubling of the number of degrees of freedom, because one has to introduce a ghost field 
~o2 which lives on the contour C2. The propagator  takes a matr ix  form, the indices 1 and 2 
corresponding to the normal (~ol) and ghost (~o2) field respectively : 

0 
DFab(p) = Uac(p) ( D o  (p) DF*(p) ) ~a Udb(P) (2.16) 
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where DoF(p) is the T = 0 Feymnan propagator 

i 
lt~ F [ \ (2.17) 

and the matr ix U is given by 

U(p) \ (2.1s) 

We have suppressed the bar  over D F for notational simplicity. The Dolan-Jackiw propagator 
(2.14) is nothing but the ( l l ) -ma t r ix  element of D R : 

i + 2 ~ , ( p 0 ) ~ ( p  ~ - m 2) (2.19) D ~ ( p )  - p2 _ m 2 q_ ie 

There are two types of vertices : in a scalar theory, to normal field vertices are associated 
factors ( - i g ) ,  while to ghost vertices are associated factors ig. Note that  the fields are mixed 
through propagators,  and not through vertices (fig.10) 

We shall not a t tempt  to give a derivation of these Feynman rules, since this has been 
worked out in detail in the literature[9], but we shall illustrate the necessity of the doubling of 
degrees of freedom on a simple example. Assume that  we have a free Lagrangian describing 
particles of mass m 2 + #2, but  that  we treat  #2 as a per turbat ion : 

1 2 2  1 2 2  (2.20) 

where ~1 is the normal field and ~o2 the ghost field. To first order in per turbat ion theory we 
have (fig. 11) 

D, ,  = D ~ ( m  ~) - i~2[(D~(m~))~ - (D~(m2))  2] + ... (2.21) 

where D R is given from (2.16) : 

D F = 27rnB(po)e ~lp°l/26(p2 _ rn 2) (2.22) 

In order to interpret (2.21), we need a regularization of 6-functions ; the correct regularization 
isN 

1 e 
6(x) = lira (2.23) 

~--.0 71" x 2 ~- e 2 

which gives : 

x l i i s ( x )  = - 1 5 ' ( x )  - izr(5(x)) 2 (2.24) 

This regularization is also useful at T = 0, and is not typical of finite temperature.  One 
discovers that  the unwanted 62 disappear in (2.21), which may be rewritten as 

2 OD~ Dl l  = D F  (m 2) + I~ ~ + . . . .  D R ( m  S + ~2) 

as it should. This formula is known as the mass-derivative formula, and has been used as a 
heuristic trick before the doubling of degrees of freedom was discovered. 
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2.3 T h e  se l f - ene rgy  in t he  r e a l - t i m e  f o r m a l i s m .  

The above example was given in order to illustrate the doubling of the number of degrees 
of freedom. There is of course a much faster (and better) way of handling the calculation, 
which makes use of the diagonal form (2.16) of the propagator. We start  from Dyson's 
equation in matrix form and write the full propagator Dab(p) by introducing the self-energy 
s°~(p) 

D,b(p) = DR(p) + DFc(p)(--i~cd(p) )Ddb(p) (2.25) 

One can show that  the same matrix U(p) which diagonalizes the free propagator Dffb(p ) 
also diagonalizes the full propagator D~b(p)[ll]; then U-~(p) diagonalizes ~ b  

0 - i~o~(p)  = v 2 ( p )  ( - i ~ ( p )  ( - i ~ ( p ) ) * ) .  v a l ( p )  (2.26) 

The calculation in the end of the previous subsection could have been performed at once 
by noting that 5] = #~ and by making in the diagonal form of the propagator the substitution 

i i 
p2 _ m 2 -b ie -'~ p2 _ (m 2 q_ #2) --k ie 

Furthermore the matrix equation (2.26) leads to relations between various matrix ele- 
ments 

ReS, I(p) = Rc~(p) 

Im~l l (P)  = coth(lf l lp0l)Im~(p) 

- i  
Sa~ (p) -- sinh(# ~o 1/2) IreS(p) 

(2.27) 

One can derive the following relation between the real- and imaginary-time self-energies[7],[9] 

E(P) = ~(Po + iepo,p-~ (2.28) 

where the imaginary-time self-energy ~(z,p") is related to the imaginary-time propagator 
through 

A-l (z ,p  -) = ~7~l(z,p-3 + ~(z,p-) (2.29) 

It is very useful to express A ( z , ~  in terms of a spectral function p(Po,P-) 

+_~ dpo P(Po,P-) (2.30) 
A(z,p--') = 2~r Po - z 

The function p(Po,P-~ obeys the positivity condition e(po)p(po,p-) >_ O, where varepsilon is 
the sign function, and the sum rule[7],[9] 

/_~oo _~0p0;(v0,~ ~ = 1 (2.31) 
OO 

which follows from the equal-time commutation relations of the field ~5(~, t) and its time 
derivative. In a relativistic context sum rules like (2.31) are in general useless because of 
renormalization problems: ~(p) has to be subtracted in order to be made finite. In relativistic 
thermal field theories, such sum rules may hold in the limit of high temperatures, because 
in many important cases (see the next two sections) the leading term of ~ is proportional to 



169 

T 2 and the T = 0 terms are negligible. This leading term is finite in per turbat ion theory, at 
least to one-loop order, and the sum rule can then be applied. 

Finally we may note that  the relation between real and imaginary time Green's func- 
tions has been investigated recently by Kobes and relations generalizing (2.28) have been 
established for 3- and 4-point Green's functions[12]. 

3. Co l l ec t i ve  e x c i t a t i o n s  in a q u a r k - g l u o n  p l a s m a  

In this section and in the following one, we shall always assume that  the temperature is 
much larger than the masses of the particles which we consider : T >> m. This is of course 
true for gluons, and also for u- and d-quarks. In what follows, we shall simply take massless 
quarks and gluons, in order to avoid unnecessary notational complications. It turns out that 
one must distinguish three scales for the momenta of the external particles 

- momenta ,,~ g2T : magnetic mass scale 

- momenta ,v gT : soft momenta 

- momenta ,.~ T : hard momenta. 

In what follows, we shall adopt the following convention: four-momenta will be denoted 
by upper case letters, while lower case letters will denote the corresponding energies and 
three-momenta: P~ = (P0,P"). When we write P ,,~ gT, we mean that  Po and p ,,~ gT. 
The quasi-particle spectrum will be especially interesting for soft external lines, since, as we 
already saw in the g2~4-theory, thermal masses are of order gT. 

3.1 F e r m i o n l c  e x c i t a t i o n s  ( Q E D  or  Q C D ) .  

The quasi-particle spectrum is found from the fermion self-energy ~(P)[13]-[14] ; we 
shall be interested by the leading term in T only, which has the remarkable property of being 
gange-invariant. This is a particular case of a general statement which will be discussed in the 
next section, in the framework of the effective expansion. We perform in QCD the one-loop 
calculation of ~ in the real-time formalism ; we only need the ( l l ) -component  of the fermion 
and gluon propagators 

s~(P) = p p~ $ i~ 2~nF(po) ~(p2) (3.1) 

( '  ) D~U(i£) = _g,U K 2"+ie + 27rnB(k°) 6(K2) (3.2) 

The Fenni-Dirac and Bose-Einstein factors are given by 

1 1 
nF(Po) = e~lp0l + 1 ; no(k°) = e~lk0l - 1 

The gluon propagator has been taken in the Feynman gauge ; one has to be careful 
when using other gauges[15]. From (3.1) and (3.2) we immediately get for the real part  of 
the thermal self-energy ~ (fig.12) 

d4K 1 
ReE~ = 2g~CFP (27r)3 (p+K)~  ((]?+]£)nB(ko)+](nF(ko))5(K 2) = C]°+p  (3.3) 

where P denotes a principal value. Since Lorentz invariance has been lost, we cart build 
Lorentz scalars other than ~ ; indeed we have at our disposal u~ = (1, 0), which defines the 
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rest-frame of the plasma. It is very important  to remark that  chiral invariance is maintained 
since obviously 

{~s,E#} = 0 (3.4) 

With  massive fermions, we would get in addition a scalar term (B1) and a term of the form 
E]9~, which of course do not anticommute with 75 and break chiral invariance. Equation 
(3.3) leads to a chiral invariant mass ; indeed the full propagator  S(P) is : 

1 (1 -- C ) ~  -- p (3.5) 
- i S (P)  - ] 9 ( 1 _ C ) _ p  - p 2 ( 1 - C )  2 - 2 P . D ( 1 - C ) + D  2 

and to first order in per turbat ion theory we discover that  the thermal mass is 2m} = 2P.D. 
Let us evaluate m} from (3.3) ; it is easy to find that  

g 2c~ f0~d~( .~ (~)+ .~ (~) )  + O(g2P ~) rn} -- 27r~ 

namely 
g2CFT2 

m} ~- 8 

In order to complete the evaluation of E#, we need the integral 

(3.8) 

l d(cos O) 1 E,(E_,  1 + k) 
1 p2 + 2~pok + 2pkcosO - 2pk In E_, (E ,  + k) (3.7) 

where 
1 '7=±1 , E . = ~ ( p 0 + ~ p )  (3.8) 

One then notices that  a sum of terms of the form [r/ = +1] + [r/ = -1 ]  leads to a 
logarithmic divergence in the k-integration, while a difference [7/= ÷1] - I t /=  -1 ]  leads to a 
quadratic divergence, resulting in a T 2 In E+/E_ factor in the final result. Such a quadratic 
divergence will appear  in the calculation of D0, since k0 can be either positive or negative. 
We find from (3.3) 

Do g2CF E+ fo ~ m} Qo(~) (3.9) - 41r~ p ln~__ dw w(nB(w) + hE(W)) = --p 

where Q0 is a Legendre function of the second kind : 

1 x + l  
Qo(x) = ~ In- -x_1  (3.10) 

We shall also need Ql (x)  

Q,(=) = =Q0(=)-  1 (3.11) 
Knowing Do and P.D, it is straightforward to compute the space components Di, using 

rotat ional  invariance : 

m 2 
1 ( p 0 D 0 - P . D ) =  (3.12) 

On the other hand it is obvious that the terms proportional to ~' are non-leading, and 
we may write the final result, to leading order in T (/~ = ~/p) : 
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iS-x(P) = ]9 - ~ = AoTo - As~7.O (3.13) 

Ao = Po - mA Qo(po/p) (3.14) 
p 

As = p -  mA Ql(po/p) (3.15) 
p 

In  order to find the quasi-particle spectrum, we must  locate the poles of S(P). Now we 
have to be a bit  careful. Indeed if we write 

1 ]9 - P (3.16) - iS(P) ~- ] 9 _ p  - p2_2P.D+ D 2 

naive per turba t ion  theory allows to neglect D 2, which is of order g4, and  gives a pole at 
p2 = 2m}, in agreement with the previous discussion. However this is no longer the case if 

the external  m o m e n t u m  is of order gT ; because of the m}/p factor in (3.9) and (3.12), all 
terms in the denominator  of (3.16) are now of order g2T2, and all of them are to be taken 
into account. A convenient way of rewriting (3.13) is 

1 1 
- iS(P)  = 2(A0 + As)  (70 + "~./~) + 2(A0 - As) (30 - "~./~) (3.17) 

There are two dispersion laws[14],[16]: the first one corresponds to the solutions of 
A0 + As  = 0. The corresponding quasi-particles have a negative helici ty/chiral i ty ratio 
(X = - 1 ) ,  while those corresponding to A0 = As  have X = +1.  We denote the dispersion 
laws by w±(p) ; the two functions are displayed in fig.13. It  is interest ing to give their 
behaviour for p ~ 0 and for p ---, co, as well as that  of the residue Z2(p) at the pole ; in the 
case X = +1 we have 

1 p (3.183) 0 ml + ] p  ; z2-  +6m s 

2p 2 
(3.1sb) 

while for X -- - 1  one finds : 

1 p (3.193) p-~O:w(p)~ - rny - lp  ; Z2N 2 6rnf 

p co 32 exp(-2p2/m}) (3.19b) 

One sees tha t  the mode with X = - 1  decouples at large p. The physical interpretat ion 
is clear : X = +1 corresponds to ordinary T = 0 Dirac particles ; at large values of p the 
propagat ion in the plasma induces only weak effects, in the form of a thermal  mass V~m l ,  
while the X = - 1  quasi-particles decouple. On the contrary, when p -+ 0, helicity is no more 
defined and one cannot  dist inguish between X = +1 and X = - 1  excitations: they both  have 
the same mass mr .  Both X -- +1 and  X = - 1  quasiparticles are collective excitations, but  
the la t ter  is more collective than  the former! 

Let us conclude this subsection with three remarks 
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(i) We have not computed the imaginary part  of P.: it can be shown that  this imaginary 
par t  is non-zero only below the light-cone, i.e. for p0 = < ~e, and it is just  given by the 
imaginary part  of the Qt functions in (3.10) and (3.11) 

X + 1 
= l n l ~  I - i~-0(1 -Izl) (3.20) In 

x - 1  

We shall see in section 4 that  this is a general feature of the leading term in T which is rda ted  
to the so-called "Landau damping" mechanism. 

(ii) It has been argued by Lebedev and Smilga[17] that  one cannot observe in fact the 
behaviour (3.19b): for p > gT the one-loop calculation is unstable and the X = - 1  excitation 
disappears below the light-cone. 

(iii) In general one does not expect Z2(X = + I ) + Z 2 ( x  = - 1 )  = 1, as could be concluded 
from (3.18)-(3.19). Indeed one can derive a sum rule analogous to (2.31), which tells us that  
Z2 ( X = + 1) + Z2 ( X = - 1) _< 1. The continuum contribution is negligible for p + 0 or p --+ 0% 
but in the general case one finds numerically[16] 

0.s  < Z , ( x  = +1) + Z2(x = - 1 )  < 1 (3.21) 

3.2 T h e  p h o t o n  p r o p a g a t o r  in a Q E D  p l a s m a  

Before we study the gluon propagator,  we first examine the simpler case of the photon 
propagator  in a QED plasma. We write the photon propagator  D I'v in a covariant gauge, 
exhibiting the transverse, longitudinal and gauge-fixing parts[18] 

iDa,, = l _ _ ~ p ~  1 _~,,, p K~'K ~' G + - - " 7 ~  "P~ + (3.22) F K 2 K 2 

with 

.. kik j 

K~' K"  
e~," = K2 g"" - P~" (3.23) 

and p is the gauge parameter; in fact one can build a fourth tensor structure which cannot 
play any role in QED and seems also unimportant  in QCD; thus we shall neglect this structure 
for simplicity. The polarization operator II ~v is defined as the difference between the full and 
free inverse propagators 

~Ip~  • --I --1 L T = - z ( D . v  - Dva,,.) = FP~v + GP;v (3.24) 

Since Lorentz invariance is lost at finite T, the advantage of working in a covariant gauge are 
much less evident than at T = 0: popular  choices of non-covariant gauges are the Coulomb 
and time-axial  (TAG) gauges. 

The results of a one-loop calculation have a rather  simple expression in the high-temperature 
limit (T ~,  m); keeping only terms proportional to T 2 one finds (k = IkD[19],[20] 

e2T2 [1 - /~]  [1-ko (ko+k~_i~rO(k2 k2o)) ] (3.25a) 
F(k0,  k) = T k2 j ~-~.(ln \ k0 - k J  

O(ko, k) = ---6-- [k= + ~ ) ~ t , n  \k-77-~_ k j  - i~rO(k = - k~)) (3.25b) 
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Let us apply to the QED plasma a (weak) external classical electric field/~ct; the per- 
turbation is then 

v = f d~ ~.E\, (3.26) 

The response of the p lasmais  a modification of the average external field E,  which of course 
vanishes in the absence of Eel. From linear response theory[21],[22], this average is given by 
the retarded commutator of electric fields 

, < E~(~, t) > =  - i  f d'~' %.o,(~', ¢)O(t - t') < [E~(~), Ej(~')] > (3.27) 

The retarded commutator is to be computed from the corresponding retarded commu- 
tator of the A~, namely 

D,~ = 0(t - t ')  < [Av(x),A~(x')] > (3.28) 

A straightforward calculation gives 

Et°t = Ei,cl + 6 < E l  > = - i / d 4 x  t Ej,et(x t) , R , R , R , R --t (--OiOjO00 + OiOoDoj "{- OoOjDio - OoO~Dij ) 

(3.29) 
For a static electric field, this formula is easily translated into 

kikiEi '¢ '(k)  (3.30) 
E~°'(k) = ~ + F(k0 = 0, ~) 

In the k0 = 0, k ~ 0 limit, we get from (3.25a) the electric mass, which controls the screening 
of the Coulomb potential of a static charge Q 

rod2 = F(ko = 0, k ~ 0) = -II00(k0 = 0, k ---+ 0) ~ le2T23 (3.31) 

Let us now turn to the plasma excitations, which are controlled by the transverse (G) 
and longitudinal (F) components of the polarization operator. We have for the transverse 
modes 

1 
7T -'- -- ~ hnG(wT,  k) 

From the explicit expression (3.41b) of G one derives the following results 

1 2 2  w , k  >>eT:  w ~ _ k 2  +m2e m2p=-~e T 

where wp is the plasma frequency, and for k ---* 0[23] 

e 2 /0~p x e2 

~'r = 2-~o~t,n~tT) ~ 2 - ~ P  

(3.32) 

(3.33) 

(3.34) 

(3.35) 
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This last result is easy to understand on dimensional grounds, since ~'T is proportional to 
the available phase space, which is nothing but  wp. Furthermore since wp << T,  the Fcrmi- 
Dirac distribution can be approximated by one; the linear dependence of (3.35) on n F will 
be explained in the next section. 

The dispersion law for longitudinal modes is given by 

We find that  they do not propagate when w, k >> eT,  as the residue of the pole tends to zero 
exponentially; this is quite analogous to what happens for X = - 1  fermions (see (3.21)). For 
w, k ~ eT one finds 

The physical interpretat ion of the above results is quite analogous to that  found for 
fermions: at T = 0, the physical modes are the transverse modes, and these are the only 
modes which propagate at T ~ 0 for large values of k; however the photons acquire a (gauge 
invariant) mass~  cT: this behaviour is quite reminiscent of that  found for X -- 1 fennions. 
On the other hand the longitudinM modes, which are unphysical at T -- 0, do not propagate 
at T ¢ 0 for large values of the momenta. On the contrary, for k = 0, we have wT = WL 
since one cannot distinguish between transverse and longitudinal modes, and for the same 
reason we must have 7T = 7L. We can see that  we have three different masses, all of order 
cT, for dimensional reasons. However it must be understood that  they have a quite different 
physical interpretat ion as they are obtained by taking different limits: 

(i) the electric mass : m~t = 1 2,~2 ~e ~ (k0 =0,  k--,0) 

(ii) the T - d e p e n d e n t  mass :  rn~ - 6e2T2 (ko ,k  > eT)  

1 2~2  (ii~)the p l~ma  frequency" ~ = ~ ~ (k0 ~ ~T, k = 0) 

3.3 T h e  g l u o n  p r o p a g a t o r  in t h e  Q C D  p l a s m a  

At first sight the situation in QCD looks very similar to that  in QED, except for colour 
factors and the substitution e -* g, where g is the strong coupling constant. At one-loop 
order one finds in the high T-limit that  the gluon polarization tensor is given by (3.41) with 
the substitution 

1 

where N¢ is the number of colours and N$ the number of flavours. Thus one finds 

(i) reel2 = .~gl 2, c + N I / 2 ) T  2. This electric mass gives the screening of the heavy quark 
potential,  which may play a crucial role in the J / ¢  suppression, if this suppression comes 
from the formation of a plasma. As already discussed, it can also be calculated on the lattice, 
with results in rough agreement with those of the perturbat ive calculation. 

= gg (No + N f / 2 ) T  2, which gives the temperature-dependent mass of high 
energy, transversely polalfized gluons in the plasma. 

= ~g (N¢ + N I / 2 ) T  2, which gives the frequency of long wave-length transverse 
or longitudinal collective excitations, or plasma oscillations. 

The crucial difference between QED and QCD is that  the functions F mad G in (3.25) 
are gauge dependent; fortunately the results for met, mR  and wp  turn out to be gauge 
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independent, at least to one-loop order and to leading order in T. However the plasmon 
damping rate 7 does not seem to be gauge independent: this problem has been known as the 
"plasmon puzzle". Fhrthermore the linear response theory is complicated by the fact that 
t he  chromoelectric field is not linear in A 

a b c E.~ = OiA~ - OoA i - g f a b c A i A  o (3.37) 

where fabc represents the Lie algebra structure constants. Thus the retarded commutator 
[E, E] will involve not only terms bilinear in A, but also A 3 and A 4 terms. This problem is 
overcome in the TAG-gauge where 

E? = -OoA~ (3.38) 

but the TAG-gauge has problems of its own. The plasmon decay rate was first computed in 
this gauge and found to be[23] 

g 2 N c T  
7 - -  24w (3.39) 

With respect to (3.35), the absence of a factor w p  can be understood as follows : the main 
decay mechanism is the decay into two gluons, which implies a factor n B ( w p )  ,'-' T /cop ,  

because w p  ,',, g T  << T. On the other hand the contribution of q~ pairs is negligible, and the 
result (3.55) is independent of N/ .  

The calculation has been repeated in the Coulomb gauge [24], with the same result as 
in (3.28), and in covariant or background gauges, where it is found that (3.39) should be 
multiplied by a factor ,,, - 5  to -10.  This would lead to plasma instability (as 7 would be 
negative[), and some authors have argued that perturbation theory is unstable, because the 
expansion is performed around the wrong vacuum. However we shall see in the next section 
that the one-loop calculation is incomplete, as the final state gluons are bare transverse 
gluons, while they should be gluons dressed by their interactions in the plasma. Actually the 
decay of the plasmon into two plasmons (dressed gluons) is kinematically forbidden [ 

At this point it may be useful to add some comments on the gauge independence of 
perturbative calculations at finite temperature. At T = 0 it is well-known that physical 
quantities like S-matrix elements can be proven to be gauge independent order by order in 
the loop expansion, at least if one is dealing with a broken gauge theory in order to avoid 
infrared divergences. However in the calculation of a dispersion law the loop expansion breaks 
down, as will be explained in detail in the next section. Nevertheless Kobes et al.[25] have 
been able to prove that dispersion laws are gauge independent: the locations of the physical 
poles in the gluon propagator are gauge independent in spite of the gauge dependence of 
the propagator itself. It follows that in any consistent approximation scheme, the dispersion 
laws should be found to be gauge independent. The loop expansion is certainly not such a 
scheme, since contributions from higher order loops are of the same order in g as the lower 
order terms. As will be shown in the next section, the effective expansion seems to provide 
such a consistent scheme: at least the results for the plasmon damping rate have been found 
to be identical in a general covariant gauge and in the Coulomb gauge. Athough this result is 
certainly very encouraging, it cannot be considered as a proof that the approximation scheme 
does give all the leading order terms! 

4. R e s u m m a t l o n  m e t h o d s  in p e r t u r b a t i o n  t h e o r y  

In this section we shall examine resummation methods which are necessary in order to 
supplement perturbation theory, because of the singular infrared behaviour. 
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4.1 T h e  ~ 4 - m o d e l  r e v i s i t e d  

Let us come back to the massless g2~4_ model which was already studied in subsection 
2.1 ; it was shown there that  the first order correction to the propagator  is of order g2T2. This 
result has the following consequence: assume that  we look at the propagator  of a particle with 
a "soft momentum",  which means that  its energy P0 and its momentum p are ,~ gT (we recall 
our convention that  4-momenta are denoted by upper case letters, energies and 3-momenta 
by the corresponding lower ease letters: pt, = (Po,P-')). For such a "soft particle", the inverse 
propagator  is of order g2T2, but the first order correction II1 to II~ (see (2.9)) is also of order 
g2T2. This means that  one carmot limit oneself to a nffive perturbat ive expansion, but that 
one must use some kind of resummation. The solution in this simple case is obvious : one 
has to use the summation drawn in fig.14126], or even bet ter  one can use a self-consistent 
equation[27]: 

II = -~-T dSp 1 (4.1) 
(2~)3 ~ + p + n 

Having performed the summation over n and the T = 0 mass renormalization, we are led for 
the T-dependent part  to the equation 

g2 [ o o  V/~ - 1 dx 
1 = ~ .]1 1/2 (4.2) 

exp(flII~ x) - 1 

The expansion in powers of g is obtained from that  of the function F(u) : 

A ~ . ,  - 1 = - J ' ( ~  - - -  

U 
+ 0(~ 2 lnu)) (4.3) 

47r 

The results are plot ted in fig.15[27], where one can see that  the deviation with respect to 
the first order calculation is rather  small. IIowever the expansion in powers of g reveals an 
interesting feature : 

g2T2 2 
l ip  = - - ~ [ 1  - 3(2-~2 ) 1/2 + ...1 (4.4) 

We see that  the next term in IIp is not in 94, as one would expect from naive perturbation 
theory, but  in g3. This is what could be called a "mild violation" of per turbat ion theory, to 
be contrasted with the strong violations which will be seen in the next section. 

The same feature also appears in the perturbat ive expaasion of the part i t ion function. 
The same resummation method leads to the so-called "ring diagrams" (fig.16), which give 
the following contribution 

N=, "~ (--III (~"'P-')/~ F(~"' P-') )N 

(4.5) 

The summation over N begins at N = 2, because the graph of fig.17 has already been 
taken into account at first order ; 111 = g2T2/24 is the first order temperature-dependent 
self-energy, and the explicit expression of (4.5) is, with A = g2/24 

l f l V T  , [ d3p (ln(1 + )'T2 " AT2 
j 

(4.6) 
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The mode wn = 0 is easily seen to give a contribution proportional to A a/2, corresponding 
again to a mild violation of perturbat ion theory. From the explicit evaluation of (4.6) and of 
the graph in fig.17, one obtains for the pressure[26] 

z2T 4 15 A 15 A a'2 
p = --66-[1 - y ( ~ )  + ~ ( ~ )  ~ +...1 (4.7) 

The first term corresponds to the free boson gas, the second one to the graph of fig.17, and 
the last one to the ring diagrams. 

In 94-theory, this use of a dressed propagator is all we have to do in order to deal with the 
IR behaviour. Indeed the dominant correction at one-loop order is the tadpole graph of fig.5 
which behaves as T 2. The one-loop correction to the coupling constant is only logarithmically 
divergent, and, as we shall see below, its thermal part  is in fact proportional to In T. 

4.2 R e m a r k s  on t h e  o n e - l o o p  c o r r e c t i o n  to  t h e  p r o p a g a t o r  

Before going to QCD, it is useful to examine in some detail a one-loop graph more 
complicated than a tadpole. Still in the case of a scalar theory, we consider a ~ 1 ~ 2  coupling 
and the one-loop correction to the w-propagator : see fig.7, which also defines the kinematics. 
From the Feynman rules and the techniques described in section 2, we get[28] 

i i = g 2 /  dak 1 (p_10+.l+.2 + n2--nl 1+"1+"2 ~ (4.8) 
(21r)a 4E1E2 Z E 1 -  E2 po - E l  + E2 + l ~ 2 -  po + E l  + E2 ] 

where : 

E1 = E~ = k ; E2 = Elf_r, I = [/7- kl (4.9) 

while nl and n2 are the corresponding Bose-Einsteln factors. The physical interpretation of 
the various terms in II is made clearer if one looks at the discontinuity of II; since II is the 
continuation to real-time of the imaginary-time self-energy, it is in fact a retarded Green's 
function, and p0 in (4.9) should be interpreted as p0 + ie. Thus 

dak 
[(1 + nl  + n2)5(po - E1 - E2) 

1 
Disc II = -2i~rg 2 (2~r) 3 4E1E2 

+ (nl -- n2)(~(po -- E1 + E2) + 1 ~ 2 - (1 + nl + n2)5(po + El  + E2)] 

(4.10) 

Let us look at the Bose-Einstein factor l + n l  +n2 in the first term of (4.10). The discontinuity 
of II is proportional to the difference (the sum for fermions) 

r = rd - rc (4.11) 

between the decay and creation rates of the particle ~; the decay process, for P0 = E1 +E2,  is 
--+ ~Pl + ~o2, and the creation process is the inverse process ~1 + W2 ~ W. The Bose-Einstein 

factor is thus : 
(1 ~t_ nl)(1 -~- n2) - ,$1 n2 = 1 -~- nl '~ n2 (4.12) 

At zero temperature,  one has of course Yc = 0 and Fd is proportionM to the factor of one in 
(4.12). Similarly the second term in (4.10), with P0 = E1 - E2, corresponds to the reactions 
7h --* ~+~2 (creation) and ~2W "* 7h (decay), the Bose-Einstein factor being 

. 2 ( 1 + . i )  - . 1 ( 1 + . 2 ) = ~ 2  - h i  (4.13) 
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In all cases we have of course the detailed balance condition 

Fd = ePV°Fc (4.14) 

In the case of a small deviation from thermal equilibrium, F should be interpreted as the 
inverse of the relaxation time which governs the approach to equilibrium[28], 

The terms where P0 = E1 - E2 or P0 = E2 - E1 correspond to the so-called "Landau 
damping" mechanism: particles disappear or are created through scattering in the bath, and 
not via the processes which are avaible at zero temperature.  

We are going to be interested in a situation where external particles are soft: P0, P "~ 
g T  << T. Momenta of order T are called hard momenta : since the T-dependent part  of loop 
integrations is limited by the thermal Bose-Einstein or Fermi-Dirac factors, these are typical 
momenta running around a loop. We need kinematical approximations for loop momenta 
k ,,~ T and external momental  p ,-, g T  << T. Take as an example the expression (4.8) ; we 
have 

E l = k  ; E 2 = l f - k ' l  - ~ k - p c ° s 8  

p 0 - E 1 - E 2 - ~ - 2 k  ; p 0 - E l + E 2 - P 0 - p c o s 8  

1 
~ 1 ( 4 . 1 5 )  n l  "~ n2 ~ eBk _ 1 

d n  
n~ - ,,2 ~_ p e o s e  - ~  = - Z p c o s O  ,~(k)(1 + n(k) ~ - Z p c o s O  

The last approximations for nl ,  n2 and nl - n2 are to be used for power counting only. Using 
these approximations, it is clear that  the first and last term of (4.8) diverge as In T, while 
the second and third term behave as a constant. 

4.3 H a r d  t h e r m a l  l o o p s  in  Q C D  a n d  t h e  ef fec t ive  e x p a n s i o n  

In what follows we shall call hard thermal loops (HTL) one-loop integrals which diverge as 
T2129],[30]. The simplest example is of course the tadpole in g2qa4. From naive power counting 
one could imagine that  the only HTL correspond to loops which diverge quadratically when 
T = 0. Thus the gluon propagator for instance should have HTL. However this reasoning 
misses most of the HTL : even diagrams which are UV-convergent, such as the N-gluons 
Green's function with N > 5 do have HTL. Except in the case N = 2, HTL come uniquely 
from terms analogous to the 2 nd and 3 rd term in (4.8). In (4.8), one can see that  one power 
of k is gained for soft external momenta since 

p0 - E1 + E2 -~ p0 - p cos 

Thus the integral diverges linearly, and not logarithmically. 

As we just  mentioned, the case of the gluon propagator  is special because one finds 
quadratic divergences at T = 0. The 4-gluon vertex will contribute via the tadpole graph, 
and there will be a further term coming from the combination (nl + n2) in (4.8). This term 
is tadpole like, in the sense that  its imaginary part  is zero at order T 2. On the other hand 
there will be terms corresponding to the combination nl - n2 : since 

f /  d(cos 0) ! l n P 0  - p  (4.16) 
l P 0 - p c ° s 8  P P 0 + P  

these terms will have an imaginary par t  of order T 2 in the region - p  < P0 < P, i.e. below 
the light cone. This property is typical of Landau damping. 
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The quark propagator is linearly divergent at T = 0; thus the terms of order T 2 which we 
found in subsection 3.1 were typical of Laaldan damping. Let us now examine the one-loop 
correction F1 to the 3-gluon vertex (fig.18). Since the external momenta are supposed to 
be soft, the 3-gluon coupling can be simplified, by retaining only terms proportional to K ~. 
After summation over n, the leading contribution to F1 is given by a sum of terms of the 
form : 

d3 k KI'~K~,~K~3 
F1 "~ g3 (21r)a EkE:,,+kEp2_ k (n(Ek) - n(Ep,+k)) 

1 
(Plo -- Ek -{- Ep,+k )(P2o - Ek -{- Ep, -k  ) (4.17) 

Power counting is very simple (see (4.15)) 

T 3 P 1 
F1,v gaTa T 3 T P:  '~ g2T 

Since F0 ~ g(gT) = g2T, we see that  the HTL is of the same order of magnitude as the 
zero-loop approximation. Tlfis means for example that  the 2-loop correction to the gluon 
propagator  in fig.19 is of the same order as the one-loop correction, and the effective expansion 
will use an effective vertex in order to sum F0 and F1. 

Power eouating for HTL has been established in[29] 

- f d 3 k  .--, T 3 

- I st propagator --~ (T ~,~) : T -1 

- each additional propagator : (PT)  -1 

- powers of K~ : T 

- Statistical factor : P / T  

Hard thermal loops enjoy remarkable properties[29]-[32] 

(i) HTL exist only for Green's functions with N external gluons lines or (N - 2) external 
gluon and 2 external quark lines. There are no HTL with external ghost lines. 

(ii) HTL are totally symmetric with respect to external gluon indices; the colour factors are 
(No + N f / 2 )  for HTL with external gluons only and CF for HTL with two external quark 
lines. 

(iii) HTL do not involve the 4-gluon vertex in the Feynman and Coulomb gauges, except in 
the case of the gluon propagator (contribution to the tadpole) 

(iv) HTL are gauge independent:  at least it has been shown in [29] and [30] that  they are the 
same in general covariant, Coulomb and axial gauges; a general proof has been given in[25]. 

(v) HTL obey Ward identies analogous to those of QED; calling ~II etc. the HTL correction 
mad ignoring the colour factors for notational simplicity we have : 

propagator : P'SII~..(P) = 0 (4.18) 

3 - gluon vertex : K"Sr .vp(K,  P, Q) = 5II .p(P)  - 6IIvp(Q) (4.19) 

quark gluon vertex :K~'SP~,(K, P, Q) = iSE(P)  - iSE(Q) (4.20) 

where Z is the quark self-energy, F the 3-gluon vertex and F the quark-gluon vertex. In 
general, K .  dotted into a N-point HTL gives a combination of (N - 1)-point HTL. 
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From our study of HTL we can establish the rules for an .effective expansion which 
gives consistently the lowest order term in the coupling constant for soft external momenta. 
The effective expansion is similar to the ordinary perturbation theory, except that for soft 
external momenta  bare propagators and vertices are replaced by propagators and vertices 
which include the contribution of HTL. Topologically many diagrams are the same as in the 
bare expansion, but one may also find diagrams built out of effective vertices which do not 
have bare counterparts. The effective propagators resum all insertions of HTL: 6II for gluons 
and 5E for quarks. The effective vertices axe formed by adding HTL to the bare vertices: 
I ' ~ r + s r .  

4.4 T h e  p l a s m o n  d a m p i n g  r a t e  

The gluon inverse propagator is written 

• - 1  zD~. = P2 gl,, - P~,P~, + G.F.T - 5IIt,, - II* pu  (4m) 

where the first three terms correspond to the bare inverse propagator, 5II~,v is the HTL 
correction and II~v is given by the effective expansion (fig.20). One notes that  5II~v does not 
contribute to the damping rate, because IlnSII = 0 "on mass-shell", from energy-momentum 
conservation : a plasmon of mass wp cannot decay into two plasmons of mass we. Thus the 
damping rate will be down by one power of g with respect to the HTL, namely 

I I * ~ g ( g T )  2 ; I m I I * ¢ 0  

To leading order the plasmon polarisation %(P)  obeys : 

and 

(4.22) 

Pt'et~(P ) = 0 

piei(P) = 0 

The gauge invariant decay rate is given by 

(covariant gauge) 

(Coulomb gauge) 

Ime"(P)n;.e"(e) 

in a eovariant gauge, and by a similar expression in the Coulomb gauge. The calculation is 
done by using the spectral representation (2.30) of propagators 

p(k0, k') = Z(k) (~(k0 - ~(k))  - ~(k0 + ~(k) ) )  + fl(k0, k)0(k ~ - kg) (4.24) 

and the result for the damping rate 7 (cf. (3.39)) is[33] 

g2NcT • a ~ 6.63 (4.25) 
- ) ,=a  24~r'" ' 

the result being the same in a general covariant and in the Coulomb gauge. The factor of a 
in (4.25) is given by a rather long formula 

f oo  /+OO dko r+OO dk, 
a = 9 j o  dkj -oo  --~o J-oo ~ C  ~ ( w P - k ° - k l ° )  

, 2 ' k4pL(/:o, k)pL(k{,, k ) -  (2(k + k0k0) p (k0, k)pL(k0, k) + 

D-1 ( ~.,~,. - ~II..)e"(P) = 0 (4.23) 
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k ko : k )*0(k (4.26) -k ) pT(k0,k)pL(k ,k)+gg(k - 

where PT and pL represent the spectral functions of the transverse and longitudinal gluons 
respectively. 

4.5 Soft  photon production in a p l a sma  

The same techniques have been used in order to compute the production rate of lepton 
pairs, via virtual photons in a plasma, when the virtual photons have a mass,,~ gT[34]. The 
result (fig.21) has a number of interesting features, due to the opening of various thresholds 
for X = +1 and X = - 1  fermionic quasi-particles (see subsection 3.1). In the low-momentum 
region, the result is larger by several order of magnitudes than the naive Drell-Yan expecta- 
tion. 

5. Conclus ions  and outlook 

We have seen that the quark-gluon plasma displays a very rich structure: one finds 
Debye screening, plasma oscillations, collective excitations with quark quantum numbers etc. 
Unfortunately there does not seem to exist a direct (or even indirect) way of detecting these 
structures in present experiments. Nevertheless it is clear that a good knowledge of these 
structures is essential if we want to make accurate predictions on possible signals of the 
plasma as well as on its evolution between formation and hadronization. 

From a theoretical point of view, although important progress has been made recently 
in our understanding of the infrared structure of thermal QCD[29]-[34], much remains to be 
done before we can really claim to understand fully this IR behaviour. Also it is clear that 
the perturbative predictions can be at best qualitative since the region in T where it could be 
trusted ( T / T c  ,,, 2), the coupling constant g is of order one, and there is really no hierarchy 
of scales. 

Finally, for lack of time and/or competence, a number of interesting topics had to be left 
out. Among these topics one could quote 

- the problem of infrared divergences of the partition function in perturbative QCD[35] 

- the role of screening in transport phenomena[36],[37] 

- the generalization of the Kinoshita-Lee-Nauenberg theorem at finite temperature[38]- 
[44] 

- the problem of chiral anomalies at finite temperature[45] 

- the perturbative calculation of interface tension[46] 

- scalar particle emission (axions) from supernovae[47] 

- the general theory of transport phenomena in the quark-gluon plasma[37] 

- the role of instantons at finite temperature[48],[49]. 

In any case we hope to have convinced the reader that hot QCD is an exciting topic with 
a lot of open problems. 
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Fig.1 The phase diagram in the # - T plane. 
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Fig.2 The ratio e / T  a as a function of 6/g 2 in pure SU(3)[5]. 
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Fig.3 The ratios ¢ / T  a and (¢ - 3 P ) / T  4 as a function of T/Tc[6]. 

"~ 1 1 -i~ 

Fig.4 The imaginary time axis. Fig.5 The tadpole in g2~a 
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Fig.6 The integration contour in the p0 complex plane. 
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Fig.7 A one-loop contribution to the self-energy. 
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Fig.10 Feynman rules in real-time. 
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Fig.11 The perturbative expansion of the propagator. 
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Fig.12 The fermion self-energy 
to one-loop order (full 
lines: quarks; wavy lines: 
gluons). 

Fig.14 An infrared divergent 
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propagator. 

(0/m f 

~=-1./ 
f 

j. 

I I 
0 1 2 p/mf 

Fig.13 The dispersion laws for the 
fermionic excitations. 
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Fig.15 The ratio m/T in g2~4127]. 
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A 

Fig.16 An example of ring diagram 
contributing to order gs to 
the partition function. 

C)C) 
Fig.17 The graph contributing to order g2 

to the partition function. 

Fig.a8 The one-loop correction to 
the three-gluon vertex 
(wavy lines: gluons), 

Fig.19 An effective vertex. 

+ vvv~ ~ww 
! 

Fig.20 Effective expansion graphs for the plasmon damping rate (do~ed lines: ghosts; 
black blobs: effective vertices and propagators). 
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ABSTRACT 

In this talk we introduce a new technique, called the delta expansion, which can be used 
to solve nonlinear problems in both classical and quantum physics. The idea of the delta 

expansion is to expand in the power of a nonlinear term. For example, to treat a y4 term, we 
introduce a small parameter delta and consider a (y 2)c1~ term. When we expand in powers of 
delta, the resulting perturbation series appears to have a finite radius of convergence and 
numerical results are superb. We illustrate the delta expansion by applying it to various 
difficult nonlinear equations taken from classical physics, the Lane-Emden, Thomas-Fermi, 
Blasius, Duffing, Burgers, and Kordeweg-de Vries equations. In the study of quantum field 

theory, the delta expansion is a powerful calculational tool that provides nonperturbative 
information. The basic idea is to expand in the power of the interaction term. For example, to 
solve a 2~4 theory in d-dimensional space-time, we introduce a small parameter ~ and con- 

sider a X(~2)1+~ field theory. We show how to expand such a theory as a series in powers of 
using graphical methods. The resulting perturbation series appears to have a finite radius of 
convergence and numerical results for low-dimensional models are good. We compute the 

Green's functions for a scalar quantum field theory to first order in delta, renormalize the 
theory, and see that when the space-time dimension is four or more, the theory is free. This 

conclusion remains valid to second order in delta, and we believe that it remains valid to all 

orders in delta. The delta expansion is consistent with global supersymmetry invariance. We 
examine a supersymmetric quantum field theory for which we do not know of any other 
means for doing analytical calculations and compute the ground-state energy density and the 

fermion-boson mass ratio to second order in delta. Last, we show how to use the delta expan- 
sion to solve theories having a local gauge invariance. We compute the anomaly in two- 
dimensional electrodynamics and discuss the calculation of g-2 in four-dimensional electro- 

dynamics. 

INTRODUCTION 

In recent papers 1'2 we introduced a new analytical technique for solving self-interacting 
scalar quantum field theories such as g~4 theory. This technique is perturbative in character;, 
it relies upon the introduction of an artificial perturbation parameter ~ and expresses field- 
theoretic quantities such as the n-point Green's function G ( n ) ( x l , x 2  . . . . .  Xn,8 ) as a series in 
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powers of ~: 

G°*) (x ~ ,x 2 ..... xn,~)= ~ ~k g ~") k(x ~ ,x 2 ..... xn) • (I) 
k---O 

This technique has many advantages. There is strong evidence that the 8 series has a 
finite radius of convergence. This is a dramatic advantage over conventional weak-coupling 
perturbation series which are rigorously known to have zero radius of convergence. Second, 
the 5 expansion is nonperturbative in the sense that the functional dependence on the physical 
parameters of the theory (such as coupling constants and masses) is nontrivial. In the 8 expan- 
sion it is only the parameter 5 which is considered small. Thus, like the 1/N expansion, the 
results are nonperturbative in the physical parameters such as the mass and the coupling con- 
stant Third, there is a well-defined orderly diagrammatic procedure for obtaining the 
coefficients in the 5 expansion. Moreover, while the coefficients in the 5 expansion can be 
infinite and, in general, must be renormalized, they are typically much less divergent than the 
coefficients in a conventional weak-coupling series. Fourth and finally, in a theory where 
there is no natural perturbation parameter, the 5 expansion provides a straightforward and 
practical route to an analytic solution. All of these features are evident in the models that we 
discuss in this talk. 

To review the key ideas of the 5 expansion let us consider a self-interacting scalar field 
theory whose interaction Lagrangian has the form 

L = g~4 . 

Rather than following the conventional approach in which we expand in powers of g (or in 
powers of 1/g) we replace L by a new interaction Lagrangian containing a dimensionless 
artificial perturbation parameter 8: 

L (5) = g(¢2)1+~ 

It is important to point out that L (8) is a positive operator. For example, when 5 = 1/2, L (8) 
means I¢13 and not ¢3. 

Clearly, expanding L (5) in powers of 5 produces a nonpolynomial Lagrangian involving 
logarithms of ¢2. However, as is shown in Refs. 1 and 2, the Green's functions for L (8) can 
be expressed as convergent power series in 5. The novelty of our work is that we have 
discovered how to calculate the coefficients in these series using conventional graphical tech- 
niques. 

An additional attractive feature of the 8 expansion is that it preserves global supersym- 
metry invariance. We will see that it is possible to introduce the parameter 8 into a supersym- 
metric Lagrangian in such a way that the resulting Lagrangian is exactly supersymmetric for 
all 5. 
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ILLUSTRATIVE EXAMPLE 

Here is a simple problem which we solve by introducing an artificial perturbation 
parameter. Consider the problem of finding the (unique) real positive root x=0.75487767 • • • 
of the fifth-degree polynomial 

X5+X=I . 

We can introduce a small artificial perturbation parameter ~ in three possible ways: 

(i) Weak coupling: 

~0c 5+x=l ; 

(ii) Strong coupling: 

(iii) Delta expansion: 

x5+Sx=1 ; 

X 1+5+X= 1 . 

We then compute the root x (8) in the form of a power series: 

X (8)= ~.~ an8 n . 
n--O 

Such series are easy to determine. The weak-coupling series begins 

x (5)=1-~-582-3583+28584-253085+2375186 . . .  

This series has the extremely small radius of convergence 0.08196. (In quantum field theory 
most weak-coupling series have a vanishing radius of convergence.) Thus, when we try to 
recover the root x (1) by evaluating the above series at 8=1 we get 21476. However, the 
(3,3)-Pad6 gives the good result 0.76369. 

The strong-coupling series begins 

x(8)=l. 8 82 83 2 1 8 5  7886 

5 25 125 ÷ l - f f ~  + 78125 

If we evaluate this series at ~=1 we get x (1)=0.75434, an extremely good approximation to 
the exact root. The radius of convergence of the strong-coupling series is 1.64938. 

The coefficients of the delta series are slightly more complicated because they involve 
the constant log2. This series begins 

x (8)=1+ ~- log2--~- log2+ . . .  

This series diverges when -8=4 but a (3,3)-Pad6 gives the good result 0.754479 and a (6,6)- 
Pad6 gives the excellent result 0.75487654. 
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SOME NONLINEAR CLASSICAL DIFFERENTIAL EQUATIONS 

Next, we show how to use the delta expansion to solve some difficult problems taken from 
classical physics. 3 First, we consider the Lane-Emden equation 

y"(x) + 2y ' (x)  + [y (x)] n = 0, y (0)=1, y'(0)=0, 

which describes a self-gravitating ball of fluid (a star). The objective is to determine the 

radius of the star by finding the first zero ~ of y: y(~)=0. Following the delta expansion 
approach we insert a small parameter 8 in the exponent of the Lane-Emden equation by 
replacing n by l+& 

y"(x) + 2y ' (x)  + [y(x)] 1+6 = 0 , 

and expand the solution y (x) as a series in powers of 8: 

y (x) = yo(x) + 8yl (x) + 82y2(x) + 83y3 (x)+ • • • . 

Notice that when ~ the nonlinear differential equation becomes linear and therefore 
extremely easy to solve. The first two functions in the delta series are 

sinx 
yo(x) = - -  

X 

c o s x i ,  sinx, , sinx 3 
Y 1 (x) = ---~--~as In(sins) - - - - ~ m t  x ) + ~cosx  

and 

where 

+ m sinX4x 21 cosxlnx - ~---~-xSi(2x)- ~ -xCin(2x)  

x 
Si(x) = ~dt sint and Cin(x) = Sdt 1-cost 

o t o t 

Using just three terms in the delta series for y (x) we obtain spectacular predictions for ~ as 
we see in the following table: 

(1,1) Pad6 Prediction for ~ Exact value of 

0 K 

-0.5 2.4465 2.4494 

0.5 4.3603 4.3529 

1.0 7.0521 6.8969 

1.5 17.967 14.972 
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We can use the (1,1)-Pad6 to predict the value of 5 for which ~=,~. The zero of the denomina- 
tor gives ~=3.65 while the exact value of 5 is 4. Thus, with only three terms in the delta 
series, we have a 9% error associated with this extremely large value of 5. 

Next, we consider the Thomas-Fermi equation 

y"(x) = [y (x)]3/2x -1/2°' y (0)=l, y (o.)=0. 

This nonlinear boundary-value problem describes the charge distribution in a nucleus. Our 
objective is to determine the value of y'(0). The exact solution to the Thomas-Fermi equation 
is shown in the figure below: 

1.0 

0.75 

0.50 

0.25 

t y(0) = I 
y'(0) = -1.5880710 

I o- , 8 1'2 x 

To use the delta expansion method to solve the Thomas-Fermi equation we insert a 
small parameter 5 in the exponent: 

y'(x)=[y(x)]l+~x-8/20, y(0)=l, y(oo)=0. 

Observe that at ~---0 this equation is linear and trivial to solve. We have carried out the delta 
expansion to order 53 (four terms). Our numerical predictions for the value ofy'(0) are as fol- 
lows (the exact numerical value is -1.5880710): In zeroth order we get y'(0)=-l, in first order 
we get y'(0)=-1.1926, in second order we get y'(0)=-1.3843, and in third order we get 
y'(0)=-1.4789. We can improve our results even further by converting the delta series to a 
Pad6; a (2,1)-Pad6 of the series gives y'(0)=-1.5712 (1.1% error). 

Next, we consider the Blasius equation 

y"'(x) + y"(x)y (x) = O, y (0)---y'(0)=l, y'(oo)=0. 

This third-order nonlinear boundary-value problem describes the fluid flow in the boundary 
layer that develops when fluid is flowing along a fiat plate. Our objective here is to use the 
delta expansion to determine the value of y"(0). The numerical value of y"(0) is 0.46960. 
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To apply the delta expansion to the Blasius equation we insert a small parameter 5 in the 

exponent as follows: 

y"(x) + y"(x)[y (x)] ~ = 0, y (0)=y'(0)=l, y'(~o)=0. 

It is crucial that at ~=0 this equation is linear and trivial to solve. We have computed three 
terms in the delta series and find that to zeroth order in delta y"(0)=l, to first order in delta 

y'(0)=0.319 (32% error), to second order in delta y"(0)=0.429 (8.7% error). 

Finally, we consider the Duffing equation 

y"(t) + y'(t) + e[y (x)] 3 = 0, y (0)=1, y'(0)--O. 

This second-order nonlinear initial-value problem describes the classical anharmonic oscilla- 
tor. Here, our objective is to use the delta expansion to determine the period of the oscillator. 

We obtain extremely accurate results from just the first two terms in the delta expansion 

(order 5) as shown in the table below: 

exact f irst-order oredici;iQn; 

4.768 4918 (3%) 

~=3 3.521 3.674 (4%) 

2.413 2529  (5%) 

The above four nonlinear classical ordinary differential equations are discussed in detail 

in Ref. 3. Observe that in all four equations, after we have inserted a parameter 5 the differen- 

tial equations become linear and easily solvable as 5 tends to 0. As 5 increases from 0, the 

nonlinearity of the differential equations smoothly turns on. 

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

We can also use the delta expansion methods to treat nonlinear partial differential equa- 
tions. 4 Consider, for example, the Burgers' equation 

u t + u Ux = V Uxx . 

We insert the parameter 5 in the usual way: 

u t + u ~ Ux = V Uxx 

and expand in powers of & If we take a Gaussian initial condition 

u (x, 0 = exp(-ax 2) , 

we obtain a perturbation series which that is trivial to calculate to any given order in delta. 
We have determined the delta series to sixth order in powers of delta and formed the main 
sequence of Pad6 approximants. In the Figure below we compare the exact solution at 
u (x,t=l) with the first six Pad6 approximants at 5=1. 
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QUANTUM FIELD THEORY 

In quantum field theory the problem of course is to find a method for expanding the 
Green's functions as perturbation series in powers of 8. Consider the Lagrangian 

1 2 1 2 2  2 2  2 2 - d 8  L=~(b(p) +~g ~ +kM ~ (~ M ) (2) 

in d-dimensional Euclidean space. In (2), g is the bare mass, ~. is the dimensionless bare cou- 
pling constant, and M is a fixed mass parameter that allows the interaction to have the correct 
dimensions. The problem is that if we expand the Lagrangian in (2) as a series in powers of 8 
using the identity 

82 ~3 xS=e 81nX=l+81nx+~.l (lnx)2+-~-.t (lnx)3+. • • , 

we obtain a horrible-looking nonpolynomial Lagrangian: 

L=1(O,)2+1(g2+2~2),2+8~,~2M21n[(~2M2-cl 1 
2 2 ~3 

+ ~-- M)2 M 2 [ln I(~2 M 2--eli +--g-3.Oo2M2[In[~2M2-a~3+ ''. (3) 
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We have devised a very simple and orderly procedure for calculating the n-point 
Green's function of  the Lagrangian in (3) as series in powers of 5. It consists of three steps: 

(i) Replace the Lagrangian L in (3) with a new Lagrangian Lw~ac~ having polynomial 
interaction terms. 

(ii) Using Lwhacko, compute the Green's function G(n)whacko using ordinary Feynman 
diagrams. 

(iii) Apply a derivative operator D to G (n)whacko tO get the delta expansion for G (n). 

The new Lagrangian/-~tu~cko and the derivative operator D depend on the number of 
terms in the 8 series that we intend to compute. For example, if we need one term in the 5 
series we take 

Lwhacko=l (3dO ) 2 + l  (I, t2 + 2)t~/[ 2 )dO2 +5~t,M d [do2 M 2-al a+ i 

Then we compute the n-point Green's function G(n)whacto to order 8, apply 

0 
D= 

and set (z = 0. 0(z ' 

Now suppose we need two terms in the 5 series expansion of G (n). We take 

1 2 1 2+ 2 2  L~h.~ko=~-(0~) +~-(~t 2704 )~ 

Then we compute G(n)whac~ to order 5 2, apply 

D 1 . 0  0 .  1 . 0 2  02 . 

and set c~=l~0. 

For three terms in the 8 series expansion of G (n), we take 

1 2 1  2 2 2  

52 3 d f ,, ~ ~ct+l 
+[8+--~-(1+a)+8 ])314 [¢,M'-"J 

8 2 [(~2M2-al ~+1 +[&o+-~-(co2+~)+53]XMa 
5 2 + [i~02 + --~- (CO-FT)-~3 ] ~)QI4 d [ ,2M 2-dl "/+1 

As above, we compute G(n)whacko tO order 8 3, apply 

D 1 .  0 2 0 0 . 1_ 02 02 2 02 " -  1 _ 03 03 03 . 
( +co +co )+ ( +co +co )+ ( + 3 + ) 

and set (x=l~----~t~0. 
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If we need four terms in the delta expansion, we take 

Lw 1 t3,kx2+ 1/, 2+2~,/2x,~2 

+[8+82 2+(X+~d"~'l-V+3(~2--i~2"-a/'2+iv2)+83-~--~-H~4 ] ~Md[~2M2-dl~X+l 
6 

+[i5+~52-2-i((x+~r'y+v)+3(i~2+~2-i~-v 2) ~_83-4/+5~ ÷54] KMdldd2M2_a]f'+I 
6 9 

+[_8.t.~2 2-{~-~"~"V+3(-O~2+i~2"~t2-iv2)+83----495~-+84] KMd[~2M2-dl ~1 
6 

+[_i~_t.82-2+i((x+~lq-v)+3(-ioL2-~2+i~2+v2) 4.~3 4i+5v ,~41 )dl/ld[~2M2-alV+l ----~---ro j 
6 

We compute the Green's function G (")whacto tO order 54, apply 

1 3 . 3 3 . 3 .  1 .  32 32 +3__~ 32 
O=-a (-~-d-'-ffff--~ +'-ff ~+~ 3a 2 3~ 2 ~r ~v 2 ) 

+ 1 (  ~3 +i 3 3 - ~ 4  -- ~ -  33 " 33 ---z- "7"7"~ _'7---T __'S'TT" _----T "T-T 1 34 34 34 34 " 
2 3~ 3~ ~? '~)+~0(~+~+o~:+o~ ~ '  

and set a=l~-'-~v-~. 

We do not have the general form of the Lagrangian Lwhacko needed to obtain N terms in 
the delta series. However, we do have the form of the derivative operator D: 

L O W - D I M E N S I O N A L  M O D E L S  

To  examine the form of the delta expansion and to verify its numerical accuracy, we 
consider a zero-dimensional and a one dimensional field theory. The functional integral for 
the vacuum-vacuum amplitude Z of a qb 4 field theory in zero-dimensional space~time is an 
ordinary Riemann integral: 

Now we insert the expansion parameter 8: 

Z=~ dXe(-X2)l~ 
/t I/2 (4) 

Recall that the ground-state energy E is given in terms of Z: E (8)=-lnZ . For this simple 
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theory we can, of course, evaluate directly the integral in (4): 

To find the delta series we merely expand the fight side of (5) in a Taylor series in powers of 
& 

E ( 8 ) = ~ ( 3 ) - - ~ -  [4~(3)+W(3)]+ 484~-~ [24~(3)+ 1 2gt,(3)+W,(3)] 

84 [ 192~(3)+ 144~,(3)+24~t , (3)+~m(3)]+ - '" (6) 
384 

Notice that the structure of the delta series in (6) is rather strange in that the coefficients 
all depend on polygamma functions evaluated at 3/2. The polygamma function ~(x) is 
defined as the logarithmic derivative of a gamma function: 

. 1 - ' , ( x )  
V(x)- 

There is a general formula in terms of zeta functions for the nth derivative of a polygamma 
function evaluated at 3/2: 

~n)(3/2)=(-1)nn t[(1-2n+l);(n+l)+2 n+l] . 

The first two such polygamma functions are ~t(3/2)=2--~21n2 and W(3/2)=-~--4. We list 

below the numerical values of the first few polygamma functions: 

~t(3/2) = 0.0364899740; 

W(3/2) = 0.9348022005; 
W,(3/2) = -0.8287966442; 

W,(3/2) = 1.4090910340. 

It is crucial to determine for which 8 the series in (6) converges. Note that E(8) in (5) is 
singular whenever the argument of the gamma function vanishes. There are an infinite 
number of such singular points 8k in the complex-8 plane given by the formula 

2k+3 k=0,1,2,3 .... 
8k= 2k+2 '  

Each of these singular points is a logarithmic branch point. Note that these singular points 
form a monotone sequence on the negative-8 axis beginning at the point ~--3/2  and converg- 

ing to the point ~=--1. We conclude that the delta series in (6) has a radius of convergence of 
1. 

A ~4 theory corresponds to ~=1, which is situated on the circle of convergence. Thus, to 
compute the delta series with high numerical accuracy we use Pad6 summation. Here are the 
results: The exact value of the energy is E (1)=-0.0225104. Because we are on the circle of 
convergence we do not expect that a direct summation of the delta series will give a good 
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result, and indeed it does not: ten terms in the power series give -0.367106 and twenty terms 
in the power series give -0.517356. However, a (3,2) Pad6 gives -0.02252 and a (5,4) Pad6 

gives -0.0225103. 

Now let us see how well the delta expansion works in one-dimensional field theory 

(quantum mechanics). The Hamiltonian for the anharmonic oscillator is: 

d 2 
H=-- 2dx2 ~-lx4 

Our strategy is to insert the parameter 5 in the x 4 term: 

d 2 1.  2,1+8 
n = -  2dx2 +~-(x ) 

The ground-state energy E for this Hamiltonian has the delta expansion: 

1 + 5  3 
e 7v(7) 

W,( 3 )+8W( 3 )ln2-8[V( 3 )12 +16~( 3 )-32+ 321n + 

This series is extremely accurate numerically. The exact value of E (1) is 0.530176, while the 
sum of the above series to order 52 is 0.534385. Notice that the form of the series is similar to 

that in (6); the coefficients are all constructed out of polygamma functions evaluated at 3/2. 

RENORMALIZATION AND TRIVIALITY OF ~b 4 QUANTUM FIELD THEORY 

We now consider the problem of how to renormalize the 5-expansion. It was pointed out 

in Refs. 1 and 2 that when d>_2 the coefficients of 5 k in the expansions of the Green's func- 

tions are less divergent (as functions of the ultraviolet cutoff A in momentum space) than the 
terms in the conventional weak-coupling expansion in powers of ~. However, the coefficients 

g(n)k(Xl,X2, " "" ,xn) in the 5 expansion are still divergent and it is necessary to use a renor- 

malization procedure. 

We will show how to regulate the theory by introducing a short distance cutoff a (which 

is equivalent to an ultraviolet cutoff A=l/a) and we compute the renormalized coupling con- 
stant GR in terms of the bare mass ~t and the bare coupling constant ~.. We then show that if 

we hold the renormalized mass MR fixed at a finite value, then as the cutoff a is allowed to 

tend to 0 (A---~.o), GR can remain finite and nonzero only when d<4. When d>4, GR~0 as 
a ~ 0 .  This result is the continuum analog of the numerical nonperturbative results already 

obtained in lattice Monte Carlo calculations. 5 

We have computed the d-dimensional two-point Euclidean Green's function G (2) (p 2) to 
second order in powers of 5. From G (2)(p 2) we can obtain the wave-function renormalization 

constant Z and the renormalized mass MR. The conventional definitions are 
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and 

Z - l - l +  0--~--[G(2)(p2)] -1 Ip2__0 , 
d(p') 

(7) 

MR2=_Z[G (2) (p 2)]-1 i p2= 0 . (8) 

We have also computed G(4)(pl,p2,p3,p4), the connected d-dimensional Euclidean 
Green's function with legs amputated, to second order in powers of ~5. From G (41 we can 
obtain the dimensionless renormalized coupling constant GR in the usual way: 

GR-~--Z2G(4)(O,O,O,O)MR d-4 . (9) 

We do not discuss the calculations of G (21, G (41, and the higher Green's functions such 
as G (61 here; the calculation is long and detailed and it is presented elsewhere. 6 It is sufficient 

to state that the calculation follows exactly the rules set down in Refs. 1 and 2. Here are the 
results forZ, MR 2, and GR to first order in 5: 

Z=l+O(~ 2) , (10) 

MR2=p.2+2;U~'I2+2~,~M2[I+xF(3)+ln[2A(O)M2-dt+O(~2 ) , (11) 

Md-2 
G R - - 4 ~ . ~ + O ( ~  2) . (12/ 

In (10)-(12), A(x) represents the free propagator in d-dimensional coordinate space; A(x) can 
be expressed as an associated Bessel function: 

A(x)=(E~)-~fddp e ix____~ p 
p2+m2 

=(2~) -d/2 (x/m)1-d/EK l-d/2 (reX), (13) 

where m 2=~t2+2L~/2. 

The function A(x) is finite at x=0 when d <2: 

A(O)=2-dn-d/2m a-2F(1-d/2) . (14) 

However, we are concerned with quantum field theory, in which d>2. For these values of d, 
A(0)=~, and it is clearly necessary to regulate the expressions for the renormalized quantities 
in (101-(12) because of this divergence. 

To regulate the theory we introduce a short-distance (ultraviolet) cutoff a; to wit, we 
replace A(0) in (11) and (121 with A(a), where 

A(a )=(2~) --a/2 (a / m) l-d~ 2 K 1 -all 2 (ma) . ( 15 ) 

Apparently, there are three distinct cases which we must consider: 
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Case 1: a m ~ l  (a-)0).  Here we can approximate the Bessel function in (15) for small 
argument: 

A(a )=--~ I'( d -1 ) (  76f12 ) 1-d/2 (16) 

Case 2: am=O(1) ( a~0) .  Here, 

A(a)=(constant) m a-2 . (17) 

Case 3: am:~l  (a- ,0) .  Here we can approximate the Bessel function in (15) for large 

argument: 

A(a)= 1 .( 2~:a )(l_d)/2e_ma (18) 
zm m 

Now we consider each of these three cases in turn. In case 1 we substitute (16) into (12) 

to obtain 

~=(constant ) GR (aM) 2-d (19) 

Then we use (19) to eliminate ~ from (11). The result is 

MR2=m2+(constant) [logarithm term] GR M 2 (aM) 2"-a . (20) 

The renormalized mass must be finite. But as a-*0 the second term on the fight side of (20) 

becomes infinite when d>2. Thus, both terms on the fight side of (20) must be infinite and 

must combine to produce a finite result. Hence they must be of the same order of magnitude 

as a---)0: 

(constant) [logarithm term] GR M 2 (aM)2--e=m 2 • (21) 

If we multiply (21) by a 2 we obtain 

(constant) [logarithm term] GR (aM)4-d=(am)2 ~ l  (22) 

by the assumption of case 1. Thus, when d<4, GR can remain finite and nonzero as a ~ 0 ,  but 

when d>4, GR--->O as a--->0 and the theory is free. 

Next, we consider case 2. We substitute (17) into (12) to obtain 

~,5=( constant ) GR (m / M ) a-2 (23) 

We use (23) to eliminate ~,8 from (11) and obtain 

MR2=m2+(constant) In(m/M) GR M 2 (m/M) d-2 (24) 

As above, we argue that the left side of (24) must be finite so the two (infinite) terms on the 
fight side of (24) must be of equal magnitude: 
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(constant) ln(m/M) GR M 2 (m/M)a-2=m 2 (25) 

We divide (25) by m 2 and solve for GR: 

GR=( constant ) (m/ M )4-a /In(m/ M ) . (26) 

Again we observe that when d>4, GR~O as m~o..  

Finally, we consider case 3. We substitute (18) into (12) to obtain 

)vS=(constant)GR(aM)(ld)/2(m/M)(d-3)/2 e -ma . (27) 

We use (27) to eliminate )~8 from (11) and obtain 

MR2=m2 + [logarithm term ] GRM2(aM)(I_a)/2(m/ M)(d_3)/2 e_ma (28) 
(constant) 

Once again, we observe that the two terms on the right side of (28) are divergent and must be 

of the same magnitude: 

[logarithm term ] GRM2(aM)(I_a)/2(m/M)(a_3)/2 e_ma=m 2 (29) 
(constant) 

From (29) we then have 

GR ~ (constant) e~(ma)(a_l)/2(m/M),_a (30) 
[logarithm term ] 

Thus, when d_<4, GR~** as am-ooo. Hence, case 3 may be excluded when d_<4. It is interest- 

ing that when d>4, GR can remain finite as am-ooo so long as m/M grows exponentially with 

am: 

ml M=( constant )e ma/(a-4) (am )(d-3)/(m-S) (31 ) 

However, this possibility can be ruled out by computing the 2n-point Green's functions G (2,0. 

To order 8 we have 

G fz~)(0, 0, "..,0)=8~(n -2) tM 22,, I-A(0)] 1-n+o (~2) . (32) 

If (31) holds, then (32) implies that for all n>2, G(Z~)~0 as am~oo and the theory becomes 
trivial. 

We have been able to generalize these arguments to second order in powers of 5. How- 

ever, we do not give the argument here. We merely present the result for the renormalized 
mass to second order in delta: 

MR2=IX2+2LM2+2)~SM2S+82{)~M2[S2+l+w(3/2)]--4)~2A(O)MnSfdax z 

1 
--4~,2 A(O)M 4 fddx!dt ~--[zt+ln(1-zt )] 

1 
+4~.2A(O)M4 fddX~odt ~ ln(1-zt)}+O(~3) , (33) 

where S=W(3/2)+ln[2A(O)M2-a]+I and z=[A(x)/A(O)] 2. We cannot evaluate the integrals in 
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(33) in closed form except in particular space-time dimensions; namely, when d=l  and when 
d is even and negative semidefinite (d=0,-2,--4,-6, • • • ). For these special values of d we 
give the explicit evaluation of these integrals in Ref. 6. 

SUPERSYMMETRIC THEORIES 

Now consider a generic two-dimensional Wess-Zumino Lagrangian 7 

L= 2(30)2 + ~..~i~lti-- + l ~ s ' ( ~ ) ~ t t +  2~.2[S((~)] 2 , (34) 

where ~ is a Majorana spinor. In the following we take S((~) = ((~2)(1+s)/2. This gives 

i -  l~,(1+8)(~2)5/2~-qrt~t+ 1 2 2 1+5 L = 1(&~)2 + ~ - V ~  + _ ~ .  ( ~ )  (35) 

Some models of this type exhibit spontaneous breaking of supersymmetry as manifested by 
the fact that the ground-state energy is nonzero. For example, a (~4t~ + (~4 theory exhibits 

spontaneous symmetry breaking, while (~2~r~t + (~7 remains unbroken. The apparent reason 

that (~pit + ~4 has a broken supersymmetry is that (~ is not a positive operator. However, if we 

set 8 = 1 in Eq. (35) we obtain a I~ I ~  t+  (~4 interaction term which is positive as we 
emphasized above. Thus, we expect that L in Eq. (35) has an unbroken supersymmetry for all 
values of 8. 

We demonstrate the power of the 8-expansion technique by computing the ground-state 
energy density E of the theory in Eq. (35) to second order in 8. To this order we obtain the 
supersymmetric result E = 0. We know of no other perturbative way to compute the physical 
quantities of this system, s 

SUPERSYMMETRIC QUANTUM MECHANICS 

To prepare for the field-theory calculation we first examine a toy model in quantum mechan- 
ics in which the complexity of fermions is absent. Like a supersymmetric quantum field 
theory, this simple model is designed to have a ground-state energy which is identically zero. 
It is quite easy to construct such a theory. One first chooses a normalizable function 
~(x) = exp(-klx 1~2), which has no nodes, to be the ground-state wave function and then 

derives the coordinate-space SchriJdinger equation for which this wave function has zero 
energy: 

- lx l / , t (x)  + [2(8-1-2)2~.2 Ix, 28+2- 1(8+1)(8+2)~.1x, 5 ] ~ ( x ) = 0 .  

The corresponding Euclidean-space Lagrangian is 

1 :~2 _ lg2(~l.2)2(x2)l+8 + 1g(8+l)(8+2)(x2)S12 (36) L=~- 
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Following the procedure outlined in Refs. 1 and 2, we can obtain the Green's functions 
of Eq. (36) correct to any order in the 8 expansion from the appropriate provisional (whacko) 
Lagrangian L For example, if we wish to compute to first order in 8 we take the provisional 
Lagrangian i_=- ~ + i a , where 

£0 = 2(J:2) + 1~.2(4+48)x2 - 1~.(2+38) (37a) 

and 

1 
= 28~2(x2) l+a - 28X(X2) a . (37b) 

Note that the Lagrangian ~ in Eq. (37a) is quadratic and that the interaction terms in Eq. 
(37b) are proportional to the perturbation parameter 5. Therefore, we can use conventional 
graphical perturbation theory to calculate any Green's function ~c~) for Lto order 8 (in this 
calculation it is necessary to assume, that (x is a positive integer). As we explained in Refs. 1 
and 2 we obtain the Green's function G for L to order 8 by first applying the derivative opera- 
tor D = d/do~ to Gand then evaluating the result at (y~---0. To this result we then must add the 
corresponding order-8 Green's functions G0 computed from f-o in Eq. (37a): 

 ord rS = dO + • (38)  

Note that by differentiating with respect to a and setting a= 0 we have analytically continued 
in (x to the point at which Lin Eq. (37) is free. 

The Feynman rules for this calculation are easy to obtain and we find the ground-state 
energy from the connected graphs having no external legs. To order 5, these graphs possess 
only a single vertex and the result is 

1 3 d [ .  8~,(20t+2)! 8~,(2a)! = 0 .  
E ground state = -  ~,~J+ ~,5+'-d-~- ~ 4(8~,)a(a+1)! ~" 2(8~,)aa! 

Now we show how to compute the ground-state energy to order 52 . The provisional 
Lagrangian for this computation now has two integer parameters a and 13: L= 7-0 + ]-a,~, where 

. _ -  + 

and 

(2i~-482)~.2 (x 2) l+a 2~.2 (x2)l+l 3 ]-o,~ = - - (2+82)X(x2) a + 2(8+82)~.(x2) ~ • (39b) 

The Green's functions for L are obtained by applying the differential operator 

1 0 O 1 .  0 2 0 2 
O = 5 (  ~o~ ~ ) + 4(-~-~2 + - ~ )  (40) 

at the point a = 13 = 0. The Feynman rules assume that a and 13 are integers. Note that there 
are five vertices. Graphs contributing to the ground-state energy to order 52 have either one or 
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two vertices. We must apply the derivative operator in Eq. (40) to each graph amplitude. 
Some of the two-vertex graphs give rise to infinite series which we can sum: 9 

2~- t_~2 (1-2)[ = y , (3 /2)  (41) 
_ ( l - 1 ) F ( l + l / 2 )  

where ~(x) = -ffTlogF(x) is the digamma function. To obtain the ground-state energy we 

must combine the contributions from 20 different graphs. The final result is Egroun d state = 0 
through order 52 . 

FIELD-THEORY CALCULATION 

Now we generalize these computational procedures to compute the ground-state energy 
density E of the supersymmetric Lagrangian in Eq. (35). We begin by writing the provisional 
Lagrangian Lappropriate for doing calculations to second order in 5: L= ~ + 7_~,[~, 

i - 1 2 2 _ 1 ~ . ( 1 + ~ )  = ½(0*)  2 + + * (42a) 

The Feynman rules appropriate for Lin Eel. (42) are a slight generalization of those used 
in the quantum-mechanical model because them are now fermion lines as well as boson lines 
and we are now working in two- rather than in one-dimensional space-time. In coordinate 
space the propagator for the boson is 

I f d2P e ip.x 
A(x) = ( 2 - ~ J p 2  + ~,2 

and the propagator for the fermion is 

1 f d2p ip'x 
AF(x) = = ( i a -  Z)A(x) 

To second order in 8 there are 19 graphs depending on ot and [~. Some of these graphs 
give rise to infinite series after the operator D in Eq. (40) is applied. All other graphs give 
rise to single expressions involving polygamma functions and two integrals: 

I -  1 d2p A(O) 
(2~Z)2 I (192 + ~2) 

and 

J = [d2xA2(x) . 
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Note that the integral I is logarithmically divergent. 

If we combine [he infinite series mentioned above into a single sum we obtain 

1~6l~2 ~'2~i2(I-2)! [41~'2[d2x A21(x) Sd2xA21-2(X) trAF(X)'~SF(X] (43) 
_ ( l - 1 ) r ( l - I / 2 )  i 2 1  2 • 

To simplify this sum, we have found a lovely identity which is easy to derive using 
integration by parts: 

4 2 trld2xA2l_2(x)AF(x~l~F(X).= 2 /2/-1+ ~Id2xA21(x) (44) 21-1 
Substituting Eq. (44) into Eq. (43) gives a sum proportional to I containing no coordinate 
space integrals. This sum is precisely that in Eq. (41). When this result is combined with all 
remaining terms we obtain E=0.1° 

We have also computed R, the ratio of the physical boson mass to the physical fermion 
mass, to second order in 8 and obtain the supersymmetric result R = 1. The calculation of R 
is described in Ref. 11. 

RECENT RESULTS IN FIELD THEORY 

I conclude this talk with a brief mention of some recent results on the delta expansion 
applied to quantum field theory. At the beginning of this talk I showed how to apply the delta 
expansion to nonlinear classical differential equations. In the context of quantum field theory 
it is natural to try to solve the Langevin equation, a classical differential equation used to per- 
form stochastic quantization. The delta expansion techniques work extremely well. 12'13 The 
delta expansion can also be used in high temperature field theory. 14 Also, the delta expansion 
has been used to examine the strong-coupling limit of quantum field theories (a very nonper- 
turbative regime of quantum field theory). 15 The large-8 limit has also been studied. 16 

Finally, I mention that work is in progress on understanding how to use the techniques 
of the delta expansion to solve theories having a local Abelian gauge invariance. These are 
electrodynamic theories whose interaction has the form 

~t(i~- eA)v . 
Such theories are invariant under local gauge transformations in which we replace ~ by 

exp(-ieLAMBDA), ~t by ~ exp(ieLAMBDA), and A~ with A~t 0~tA. To apply the tech- 
niques of the delta expansion to such theories we simply modify the interaction term so that it 
reads 

ea) v 

Introducing the parameter 8 in this way preserves the local gauge invariance. 
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A first paper on the Schwlnger model (two-dimensional massless quantum electro- 
dynamics) has been published 17 in which we show that the delta expansion truncates after 
one term. The anomaly is given by 8e2/~. Note that when b=0 there is no anomaly and that 
as 8 increases from 0 to 1 the anomaly smoothly attains it known value. 

In such theories we have shown that the parameter 8 has a very simple interpretation: 

Imagine a theory of quantum electrodynamics in which there are 8 species of electrons, all 
coupled minimally to a single photon field A ~t. In the delta expansion we are expanding in the 

number of these electron species in the limit as the number of such species is small. Two 
additional papers on electrodynamics 18' 19 have been submitted. We are currently working on 

the problem of calculating g - 2  in four-dimensional quantum electrodynamics. 

We do not yet know how useful our methods will ultimately be in non-Abelian gauge 
theories. Much more research is required. However, it is already clear at this early stage that 

the delta expansion has very wide applicability. 
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NUMERICAL STUDY OF THE TRANSITION 
TO CHAOTIC CONVECTION INSIDE 

SPHERICAL SHELLS. 

L o r e n z o  V a l d e t t a r o  1 and M i c h e l  R i e u t o r d  1,2 

1 CERFACS, 42 Av. G. Coriolis, 31057 Toulouse CEDEX, France. 
2 Observatoire Midi-Pyr6n~es, 14 Av. E. Belin, 31400 Toulouse, France. 

A B S T R A C T  The properties of convection inside a spherical shell heated from within are studied by direct 
numerical simulations. A pseudo-spectral method is used. Both the compressible and the incompressible 
(Boussinesq) case are treated. 
We consider first a non rotating configuration. It is well known tha t  the solutions of the  linear problem are 
degenerate, due to the spherical symmetry,  and tha t  their angular behaviour is in the form of spherical 
harmonics  Y~,n with a given I and any m. The degeneracy is removed by taking into account the  nonlinear 
terms.  This  selects a particular value of the wavenumber m [Bus75]. We observe the  expected pat tern  very 
near the critical Rayleigh number.  However when we increase the Rayleigh number  the  solution undergoes 
transit ions to other steady configurations. 
We then s tudy  the transition to chaotic convection by increasing the Rayleigh number,  both in a non 
rotating and in a moderately rotating (Taylor number of 100) configuration. In both cases we observe at 
first the onset  of a periodic behaviour, then the appearance of a second frequency, followed by a chaotic 
regime. The  behaviour of the convection cells in the 1-frequency and 2-frequency regimes is presented. 

1 Introduction. 

The study of convection in spherical shells is motivated by astrophysical interest (convec- 
tive envelope of stars) and geophysical interest (convection in the Earth's deep interior). 

The case of a compressible fluid has already been considered by Bercovici et al. 
[BSGZ89]. However these authors considered the case of an infinite Prandtt number 
suitable to the Earth's mantle. Here, we consider the case of a finite Prandtl number 
(namely unity) for which, except the general work of Busse [Bus75] or the one of Gilman 
and Miller [GM86], nothing was known. 

Independently, we also worked on the case of a Boussinesq fluid in the same configu- 
ration but including a mild rotation. 

For these two cases, we studied the transition from marginal convection to the chaotic 
one. In both cases, the Ruelle-Takens scenario appeared as the good one. In the Boussi- 
nesq case, we also demonstrated the origin of the two frequencies which are the key of 
the scenario. 
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2 S t a t i o n a r y  c o n v e c t i o n  

2.1 PARAMETERS OF THE RUNS 

The numerical code we use in the stationary convection regime is the compressible one 
[VM89]. We fix the following equilibrium parameters: 

- The stratification rate X =-- flTop/flBottom. We take a constant density, i.e. X = 1. 
Consequently the polytropic index m is equal to zero. 

- The entropy gradient 
dS/C  

e - d log---r I:rop 

This quantity measures the relative importance of compressiblity, since it is proportional 
to the square of the Ma~h number ([GG81]). We choose a value of order 1 (e = 3) in 
order to have non negligible compressible effects. It turns out from the computations 
that  the average Mach number is slightly less than 1. 

- The Taylor number: We have considered the case without rotation, i.e. Ta = 0. 
- The Prandtl  number: we have assumed the kinematic viscosity and the thermal 

diffusivity constant and equal. Therefore Pr - ~/n is equal to 1 throughout the shell. 
- The aspect ratio t3, i.e. the ratio between the outer and the inner radius of the shell; 

we have chosen the value fi = 2. 
- Finally we have assumed a perfect monoatomic gas, i.e. cp = 5/2, cv = 3/2. 
The boundary conditions we impose are the following: we specify the temperature at 

the bot tom and at the top of the shell. The ratio between the inner and outer temperature 
is fixed by the parameters we have defined above: Tsottom/TTop = 1 + 2efiCp/(Cv -- m)  = 
21. We have thus slightly less than 3 temperature scale heights. For the velocity we 
consider rigid boundary conditions, g = 0. 

The above parameters are all fixed. The control parameter we use to change regime is 
the Rayleigh number, defined as 

d S / C ,  gh 3 

(g being the gravity, h the depth of the shell and r the radial coordinate). 

2.2 NUMERICAL RESULTS. 

At the critical Rayleigh number R~cthe linearly unstable modes are those with l = 4, 
and there is degeneracy in the wavenumber m. According to [Bus75] the only stationary 
patterns which are possible are the axisymmetric solution (Figure la) and the "cubic 
solution", which displays 6 convection cells with a cubic symmetry (Figure lb); moreover 
from the analysis of [Bus75] the expected pattern near the threshold is the 6-cells pattern. 

We observed that the stationary convection regime extends to Rayleigh numbers up 
to 16 times the critical number. In this range We have searched systematically for the 
stationary solutions by perturbing the conductive profile with a random noise. For each 
solution we studied the stability to a variation of the Rayleigh number. 
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At very slightly supercritical Rayleigh numbers, between R:cand 1.6Rat, the wavenum- 
her l = 4 is the only one which is linearly unstable. Two types of solutions were observed 
in this regime: 

- The 6-cells solution predicted by [Bus75] (Figure lb). We have observed both the 
solution with ascending currents inside the cells and that  with descending currents. 

- The axisymmetric solution which displays 2 rising rolls, 2 sinking cells and 1 sinking 
roll (Figure la),  together with its reciprocal (2 sinking rolls, 2 rising cells and 1 rising 
roll). 

We point out that  none of these solutions is a pure l = 4 mode, since by non-linear 
interaction other/-modes are excited. However the energy contained in the l = 4 mode 
represents more than 80% of the totM energy. 

These solutions are stable in the range R~c---~ 1.6R~, but their basin of attraction is 
very sensitive to the Rayleigh number. For very slightly supercritical Rayleigh numbers 
we have obtained most of the time the 6-cells solution, and no preference is found between 
the ascending-cells and the descending-cells configuration; when we increase the Rayleigh 
number howewver we observe a preference for the axisymmetric solutions, and also for 
the configurations which have downwelling cells and upwelling rolls. This means that  the 
basin of attraction of the 6-cells solution shrinks when the Rayleigh number is increased, 
and that  the symmetry between rising-cells and sinking-cells configurations is broken in 
favour of the sinking-cells configurations. 

In the range 1.6Ra~---~ 6Racthe 6-cells and l = 4 axisymmetric solutions were very 
difficult to maintain: a small change in the Rayleigh number was enough to produce 
a transition to other stationary solutions; we are not able however to say if they just 
become unstable or if their basin of attraction becomes so small that  a small increase in 
the Rayleigh number is sufficient to leave it and enter another basin of attraction, leading 
to another solution. New solutions are obtained in this range: the l = 3 modes become 
linearly unstable and we find solutions which are dominated by this wavenumber. The 
new solutions we found are the following: 

- A mixture of l = 4 and l = 3 modes, with a dominance of l = 4, which displays 4 
convection cells (Figure 2); we will call it the "l  = 4, 4-cells" solution. 

- A mixture of l = 4 and l = 3 modes, with a dominance of I = 3, which also displays 
4 convection cells (Figure 2); we will call it the "l = 3, 4-cells" solution. 

- An almost pure l = 3 mode with 3 convection cells (Figure 3b) 
- The l = 3 axisymmetric solution (Figure 3a) In this range we found almost only 

patterns with downwelling cells. 

To illustrate the kind of transitions between the modes that  we observe, we show in 
Figure 4 an example of computation, in which we started from the "l = 3 3-cells" con- 
figuration at a Rayleigh number of 2.11R~ and we progressively decreased the Rayleigh 
number to the critical value. We see that the "l  = 3, 3-cells" solution undergoes at first a 
transition to the l = 3 axisymmetric pattern, then at 1.6R~the l = 3 mode is stabilised 
and there is a transition to the l = 4 axisymmetric solution, which remains stable down 
to R~c. 

At Rayleigh numbers greater than 6R~cwe see the apparition of the I = 2 axisymmetric 
modes, displaying two descending convection cells and one rising roll (Figure 5a). The 
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"l = 4, 4-cells" solution has totally disappeared in this range, the I = 3 mode is observed 
only in the form of the "1 = 3, 3-cells" pattern. 

At slightly supercritical Rayleigh numbers the shape of the convection cells and of the 
convection rolls is essentially symmetric with respect to the axis which pass through 
their center and is directed radially. When we increase the Rayleigh number, typically 
for values > 10Ra~, we observe that this symmetry breaks down. Every cell and roll 
is distorted with a characteristic wavenumber, and the amplitude of the distortion is 
increasing with the Rayleigh number. Figures 5b, 6 and 8 are representati.ves for the 
distorted patterns of the stationary solutions we observe at these Rayleigh numbers. For 
the I = 2 axisymmetric mode we find two types of distortions; the first type is an m = 3 
symmetry breaking which produces cells with three legs (Figure 5b). The length of every 
leg is equal. The equatorial symmetry of the pattern is destroyed, due to the fact that the 
distortions of the two cells are shifted by ~'/3. In the second type of distortion we have 
a m = 2 symmetry breaking, which produces cells with 2 legs (Figure 6); the equatorial 
symmetry is maintained. 

3 T i m e - d e p e n d e n t  c o n v e c t i o n  

The simulations of compressible convection were performed at higher Rayleigh number, 
together with simulations in the Boussinesq regime, to study the generic route from 
stationary to chaotic convection in spherical shells. In both cases the transition may be 
identified to a Ruelle-Takens scenario. 

3.1 THE COMPRESSIBLE CASE WITHOUT ROTATION. 

We consider the same equilibrium parameters as in Section 2 and we increase the 
Rayleigh number until we start to have time dependency, for R~ > 16Rat. At these 
Rayleigh numbers the patterns we observe are those of Figures 5b, 6 and 8. At the 
onset of time periodic convection the periodic motions have an amplitude consistent 
with a ( R a  - R~,cl) 1/2 law, R~cl being the Rayleigh number for the onset of time depen- 
dent behaviour. This suggests that we are in presence of a Hopf bifurcation from the 
equilibrium state. Further increase in the Rayleigh number leads to an aperiodic motion 
which exhibits two uncorrelated frequencies. We describe here the periodic and aperiodic 
motions. 

For the l = 2 solution with the m = 3 distortion of Figure 5b the periodic motion is in 
the form of a rigid rotation of the Whole pattern about an axis which pass through the 
centers of the 2 convection cells. The pattern conserves the ~r/3 symmetry about that 
axis. At the onset of 2-periodic motion this symmetry is broken, due to the fact that the 
legs of the convection cells begin to pulse incoherently, with a frequency which is related 
to the second frequency (Figure 5c). 

In the case of the I = 2 solution with the m = 2 distortion of Figure 6, the periodic mo- 
tion is in the form of two counter rotating waves propagating around the axis which pass 
through the centers of the 2 convection cells. The equatorial symmetry is maintained. 
The second frequency breaks this symmetry: there appear new waves at the second fre- 
quency, which propagate around the same axis but are incoherently distributed (Figure 
7). 
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Finally we consider the case of the "/ = 3, 3-cells" solution. The periodic motion 
is more clearly understood by looking at the interstices between the convection cells, 
rather than at the cells themselves: the three branches of the interstices oscillate in 
phase (Figure 8). The 2-periodic motion superimposes waves which have the second 
frequency and destroy the phase-locking of the three branches (Figure 9). 

3.2 T H E  BOUSSINESQ CASE WITH ROTATION. 

We considered then the model of a Boussinesq fluid inside a spherical shell containing 
heat sources. Such a model has been used many times in the past and we refer the 
reader to Zhang and Busse (1987) [ZB87] for an exhaustive description. We studied the 
transition to chaotic convection at a moderate Taylor number Ta = (29td2/u) 2 = 100, 
where ~ is the angular velocity of the frame, d is the thickness of the layer and u is the 
kinematic viscosity. The Prandtl  number was set to unity and the ratio of the radius of 
the inner and outer shells is 0.4 . 

At the threshold of linear stability, the mode first destabilized is the 2 + one 1. In the 
frame of the shell, this mode is a wave moving westward, however the pattern of the 
wave is steady and so i~ the kinematic energy of it. This pattern contains all the modes 
excited by 2 + through the nonlinear coupling and the spectrum is the set {(2p)+}p=0,1 ..... 
The kinetic energy of the modes entering this chain is constant once the transitories 
are damped. This is valid in the interval of Rayleigh numbers Rac < Ra < Racl; when 
this new critical Rayleigh number (Rat1) is passed the pattern starts to oscillate with a 
period of N 0.6 viscous time. Then, when further increased (beyond ,,, 2.0Rat) another 
frequency is seen in the time series. This second frequency has not been identified to 
a particular pattern motion. Then, if the Rayleigh number is still increased time series 
become irregular or chaotic; this is when Ra > 2.4Ra~. 

Such a transition may be identified to a Ruelle-Takens scenario for transition to chaos. 
Analyzing more thouroughly the results we could make out that the two frequencies are 
present already in the range Ra~ < Ra < Ra~l of Rayleigh numbers. 

Indeed, if one analyses the linear stability of the nonlinear solution developing when 
Ra~ < Ra < Ra~ ,  that  is the set {(2p)+}p=0,~ .... then one can establish the following 
results. Three sets of modes may be used to describe the linear perturbations; these are: 

{(2p + 1)+}p=0,1 .... 

{(2p)-}p=0,1 .... 

{(2p + 1)-}p=04 .... 

In this range of Rayleigh numbers all these sets of modes are damped and the so- 
lution {(2p)+}p=o4 .... is stable; when Ra = Rail  then the set {(2p)-}p=0,1 .... becomes 
marginal. Then, only the damping rate of {(2p + 1)-}p=04 .... is real, for the two other 
sets ({(2p)-}p=04 .... and {(2p + 1)+}p=04,...) the damping rates are complex and exhibit 
a frequency of oscillation (say w_ and w+). 

IWe classify the modes according to their symmetry which is referred to by a symbol m + or m -  which refers 
to the azimuthal dependence (e line) and its symmetry (+) or antisymmetry ( - )  with respect to equator. 
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It is these two frequencies which show up when the Rayleigh number is further in- 
creased (see Figures lOa and lOb). 

4 Conclusion 

Our extensive computations in the stationary compressible convective regime has shown 
some general trends, which have also been observed by other authors ([MR86] for 
the Boussinesq case and [BSGZ89] for the compressible infinite Prandtl number case); 
namely that increasing the Rayleigh number the axisymmetric configurations, and those 
which display a smaller number of cells, tend to be favoured. Indeed, while at slightly 
supercritical Rayleigh numbers the typical configuration is that with 6 convection cells 
and a cubic symmetry (Figure lb), at the onset of time periodic convection we had 
almost always the axisymmetric configuration diplaying 2 descending convective cells 
of Figure 5a. This phenomenon still require a satisfactory explanation. As was pointed 
out in [MR85] and [BSGZ89], the assumption that convection acts to maximize the 
heat flow, with the consequence that the pattern chosen is the one which maximize the 
Nusselt number, is not supported. We confirm this in the compressible shell at finite 
Prandtl number. Another explanation was given in [BSGZ89], where it was inferred that 
the convective solutions tend to minimize the viscous shear of upwelling and/or down- 
welling regions. This would explain why there is a tendency to decrease the number of 
cells. However, they pointed out that the configuration which minimize the shear is that 
in which the upwelling regions are in form of cells and the downwelling regions in form 
of sheets, which is the contrary of what we obtain. We propose here that the transition 
could be due to an AKA instability ([SKR66, FSS87, SSSF89], which produces a cascade 
towards smaller wavenumbers. 

The time dependent convection displays a Ruelle-Takens scenario, both in the com- 
pressible and the Boussinesq regime. This is consistent with previous sudies ( for example 
[MY86] for Boussinesq infinite Prandtl number). 

It appears that the time dependency of the convective patterns is a very simple one, 
namely the superposition of long wavelength waves on the original pattern; moreover 
in the periodic regime these waves maintain several symmetries. This simple result con- 
strasts with the fact that the amplitude equations are very complicate, since they contain 
the interaction between all the modes which are linearly excited, which are from l = 1 
to 1 "~ 15 in our runs. This leaves a hope to undertake a semi analytic approach to the 
problem, once the leading terms in the amplitude equations have been detected. In the 
Boussinesq case the problem is even more simple, since, as we have shown, there are 4 
sets of modes which are almost independently excited and display their own frequency. 
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FIGURE 1. (a) Isosurfaces of constant  radial velocity for the I = 4 axisymmetr ic  pat tern of convection. The  
first figure refers to downwelling motions, the second figure to upwelling motions. The  inner bounding sphere is 
also shown. 
(b) Isosurfaces of  constant  radial velocity for the 1 = 4 cubic pat tern of convection. The  first figure refers to 
downwelling motions, the second figure to upwelling motions. The  inner bounding sphere is also shown. 

F IGURE 2. Isosurfaces of constant  radial velocity for the "1 = 3, 4-cells" pat tern of convection, which has the 
tetrahedral  symmetry.  The  first figure refers to downwelling motions, the second figure to upwelling motions. 
There  exists another stat ionary solution, similar to this, but  dominated by the  l = 4 mode, which we refer to 
the  "I = 4, 4-cells" solution. 

I 1 

FIGURE 3. (a) Isosurfaces of consta~at radial velocity for the 1 -~ 3 axisymmetric pattern of convection. Tile 
first figure refers to downwelling motions, the second figure to upwelling motions. 
(b) Isosurfaces of constant  radial velocity for tire "l = 3, 3-cells '~ pattern of convection. The first, figure refers to 
downwelling motions, the second figure to upwelling motions. 
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FIGURE 4. Energy in the different / - m o d e s  versus time for a typical run, s tar t ing from a stationary solution. 
The  Rayleigh number  is progressively decreased down to the critical value. 
Region 1: Ra = 2.11Ra,. The  solution tends to the "1=3, 3-cells" pattern. 
Region 2: Ra = 1.9Rat. The  solution tends to the l=3 axisymmetric pattern.  
Region 3: Ra = 1.6Ra,. The  solution tends to the 1=4 az~isymmetric pattern.  
Region 4:/Ea = 1.4Rat. The  solution stays on the l=4 axisymmetric pattern. 
Region 5: Ra = 1.02Rat. The  solution stays on the 1=4 axisymmetric pattern.  
The  first figure is in linear scale, the second in logarithmic scale. The t ime unit  is the viscous time. 

C 

FIGURE 5. (a) Isosurfaces of constant radial velocity for the I = 2 axisymmetric pat tern of convection, which 
has two downwelling cells (shown in the figure) and one upwelling roll. The  inner bounding sphere is also plotted. 
(b) l----2 axisymmetr ic  solution with a~ ra = 3 distortion in the time periodic regime: the motion corresponds to 
a rigid rotation of the pat tern around the axis A. 
(c) 1=2 axlsymmetr ic  solution with an m = 3 distortion in the aperiodic regime: the motion is the superposition 
of the rigid rotation and a pulsation of the legs of the cells. 
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FIGURE 6. 1 = 2 axisymmetrie solution with an m = 2 distortion in the periodic regime: two counter rotating 
waves axe propagating through the axis A. the time sepaxation between each figure is 1/6 of the period. 

FIGURE 7. 1=2 axisymmetric solution with an m = 2 distortion in the aperiodic regime: note the break of the 
equatorial symmetry. 

FIGURE 8. "1=3, 3-cells" solution in the periodic regime. The two figures are separated by a time interval of 
half of the period. 
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FIGURE 9. ~1=3, 3--cells" solution with an m = 2 distortion in the aperiodic regime. The time separation 
between the figures is half of the period corresponding to the first frequency. Note that the waves, labelled 1, 2 
and 3, break the phase locking of the 3 branches. 
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FIGURE 10. (a) Time evolution of the chains {(2p)- }p=0,1,... (oscillating curves) and {(2p+ 1)- } p=0,1,... (straight 
curves). Ra. = 1 .4Ra~ and the time u . i t  is the viscous time. 
(b) Time evolution of the chains {(2p) ÷ }p=0,x .... (straight curves) and {(2p + 1) + }p=0~ .. (oscillating c.rves). 
R a  = 1 . 4 R a t  and the time unit is the viscous time. 
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A B S T R A C T  

We investigate, with the aid of three-dimensional direct-numerical simulations (using 
pseudo-spectral methods) at high resolution (up to 1283 grid points in a cubic box 
containing four fundamental longitudinal wavelengths), the origin and topology of the 
longitudinal vortex filaments which appear in temporally-growing mixing layers. The 
basic velocity field is a hyperbolic-tangent profile U tanh 2y/6/, with a Reynolds number 
U $ d u  = 100. The basic flow is forced initially by two small random perturbations of 
wide spectrum peaking at the fundamental mode: a three-dimensional one, of kinetic 
energy g3D U 2, and a two-dimensional one, of kinetic energy g2D U 2. For g2D : 10  - 4  

and end = 10 -~, quasi two-dimensional large coherent Kelvin-Helmholtz rollers are 
formed. They slightly oscillate in phase, as in the translative instability proposed by 
Pierrehumbert and Widnall (3. Fluid Mech., 114, 59, 1982). Between the big rollers, 
thin hairpin longitudinal vortices are stretched. For g2D -~- 0 and E3D : 10  - 4  the 
fundamental rollers which appear have strong spanwise oscillations which are not in 
phase. Pairings between the primary vortices lead to their reconnection in specific 
locations of the span, giving rise to a vortex lattice. This is numerical evidence of 
Pierrehumbert and Widnall's helical-pairing instability. In this case, thin longitudinal 
vortices are also formed, stretched away from the region of reconnection of the rollers. 

1. - I N T R O D U C T I O N  

Many laboratory or numerical experiments have pointed out the existence of spanwise- 
organized large-scale vortical structures in the plane mixing layer. These structures 
have been found to be the result of successive pairings of the primary vortices resulting 
from the Kelvin-Helmholtz instability, which is basically two-dimensional. However, all 

* Unit@ associ@e CNRS 
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mixing layers are known to develop three-dimensionality, both in the small scales and in 
the large scales: certain laboratory experiments (see [1] and [2], for example) show thin 
hairpin vortex filaments which are strained downstream between the two-dimensional 
large rollers. These vortices are also shown in the direct-numerical simulations carried 
out by Metcalfe eta/.  [3]. Another experiment at a high level of turbulence [4] featured 
a 'double-helix vortex-structure' after the first pairing of the Kelvin-Helmholtz vortices, 
this 'helical-pairing' occuring in certain locations of the span only, by contrast with 
quasi-two-dimensional pairings observed by Bernal and Roshko [2], which occured all 
along the span. 

Among various explanations for the existence of the hairpin vortex filaments ob- 
served in the experiments ([1],[2]), let us mention the one associated with translative 
instability [5], which results from a secondary instability analysis performed on Stuart 
vortices. It is characterized by a global in-phase spanwise oscillation of the primary 
rollers. The laboratory experiments of Bernal and Roshko [2] show a spanwise wave- 
length of the hairpin vortex filament of the order-of 2 A/3, where A is the longitudinal 
wavelength of the Kelvin-Helmholtz vortices, in good agreement with the most amplified 
spanwise wavelength of the translative instability. However, the thin longitudinal vor- 
tices found experimentally are strained between and wrapped around the the big rollers, 
but are of a different nature. Another mechanism has been proposed ([6],[7]), where 
vortex filaments (carrying low vorticity) in the stagnation or braid region, perturbed in 
the spanwise direction, would be strained longitudinally by the basic shear, yielding the 
hairpin vortex structure. This was confirmed by a three-dimensional numerical simula- 
tion using vortex-line methods [8]. An explanation of the 'helical-pairing' has also been 
proposed in [5], still on the basis of a Stuart-vortex secondary instability analysis. In the 
latter case, the Stuart vortices were submitted to a spanwise perturbation modulated 
by a streamwise sub-harmonic mode. 

Since all the above-quoted direct-numerical simulations involved both a low number 
of fundamental Kelvin-Helmholtz vortices and deterministic initial perturbations, we 
have here carried out a high-resolution calculation (up to 1283 Fourier modes) with 
4 fundamental rollers forming initially: the streamwise length of the computational 
domain is equal to 4 A~, where A~ ~ 7 6i is the initial most amplified fundamental 
longitudinal wavelength. We force initially the mixing layer with a random perturbation, 
more apt to model the background fluctuations in natural mixing layers. We will show 
that the vortex structure which develops in the layer depends crucially upon the three- 
dimensionality of the initial perturbation. In Section 2 the conditions of the numerical 
simulation will be presented. Section 3 will be devoted to the case of a purely three- 
dimensional initial forcing, and to the resulting vortex-lattice structure, corresponding 
to the development of the helical-pairing instability. In Section 4, we will consider a 
quasi two-dimensional initial forcing. 

2. - M E T H O D O L O G Y  

Using a pseudo-spectral numerical method, the continuity, Navier-Stokes and passive- 
scalar transport equations are solved in the Fourier space in the form 
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k.fi = 0 , (1) 

0~1 = H {F [F-I(~I) x F - I (~ ) ]}  - y k 2 ~l ~(2) 
0t 

O~ - i k . F  [F- l (~) .F- l ( f l ) ]  a k 2 ~ (3) 
0t 

where & -- i k x fi is the vorticity in the Fourier space (i2 = -1) ,  F is the discrete 
Fourier transform operator, II is the projection on the plane normal to the wave vector 
k, and k =  V ~ .  

Periodic boundary conditions are applied in the streamwise x and spanwise z direc- 
tions. The initial conditions result from the superposition of a small-amplitude random 
perturbation onto a one-directional basic profile, both for the velocity and the passive 
scalar fields. This basic velocity profile is defined by 

u0( ) = v , (4)  

6i being the initial vorticity thickness. The passive-scalar profile is also proportional to 
tanh (2y/6i). We then use free-slip boundary conditions in the transverse y direction, 
by means of sine and cosine expansions. 

In all cases, the Computational domain is cubic, with a side L chosen equal to four 
times the most amplified streamwise wavelength )~a predicted by the inviscid linear- 
stability theory, viz., 7.07 6i (Michalke [9]). 

The basic velocity and passive-scalar profiles are perturbed initially by two random 
sets of disturbances whose spectra are broad-banded. The first perturbation is three- 
dimensional, of kinetic energy g3O U 2.  The other one is two-dimensional, of energy 
~2D U 2. 

A good point of comparison is the case g3D ---- 0 ,  where the problem is two- 
dimensional: the corresponding study was done in Lesieur et al. [10]. In this study, four 
primary vortices rolled up at about t = 15 6i/U, paired at 30 6dU , and paired again at 
70 5~/U. 

3. - N A T U R A L  T R A N S I T I O N  

We present here calculations with g2D "~- 0 and g3D ~" 10 -4, that is, with a purely 
three-dimensional perturbation. Physically, such a perturbation may be obtained by 
introducing three-dimensional isotropic residual turbulence into the basic shear layer. 
Plate l-a, b and c show top-views of vortex-lines locally coloured by the vorticity mag- 
nitude, at t -- 17, 22 and 30 6i/U respectively. Plate 1-d and e show, at t = 30 6JU, 
the iso-surfaces [1~1[ = 1/3 w~ and O = 0 respectively, wi = 2 U/6i being the initial shear 
brought about by the basic flow. 

At t = 0, the initial perturbation superposed onto the basic flow is not visible 
on visualizations: vortex lines are straight and oriented spanwise, the interface 0 = 0 
collapses onto the plane y = 0 and the locus w = 1/3 wi consists of two plane sheets y = 
constant. As from t = 10 6i/U, the growth of unstable modes becomes visible: one can 
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see the progressive concentration of vortex lines, while spanwise oscillations amplify at 
various wavelength and scales, with different growth-rates. This mode-selection leads 
to the progressive formation of a vortex lattice [11], basically made of four Kelvin- 
Helmholtz vortices; they merge at specific regions of the span, by contrast with the quasi- 
two-dimensional pairings observed in [2]. In addition to these four Kelvin-Helmholtz 
rollers, the simulation also features a thin hairpin vortex stretched between them. From 
Plate l-a, b and c, it turns out that this hairpin results from the concentration of vortex 
lines in the braid region between the Kelvin-Helmholtz vortices. This appears strikingly 
in Plate 1-c where are plotted vortex lines shot from highest vorticity magnitude regions 
(to show the Kelvin-Helmholtz vortices) and also from points located in the hairpin 
vortex, in order to materialize the latter. This hairpin vortex is then stretched by 
the Kelvin-Helmh01tz vortices, until it looks like a pair of streamwise counter-rotating 
vortices analogous to those observed by Bernal and Roshko [2] in a more two-dimensional 
case. 

From Plate 1, it seems that the highly three-dimensional lattice structure of the 
Kelvin-Helmholtz rollers we observe here results from the helical-pairing instability pro- 
posed by Pierrehumbert and Widnall [5] (see Fig. 6 of [5], to be compared with Plate 
l-a) to explain the double-helix vortex structure obtained by Chandrsuda et al. [4] in 
laboratory experiments at a high level of turbulence: as mentioned in the introduc- 
tion, Pierrehumbert and Widnall [5] not only studied the translative instability, but 
also the linear de-stabilization of a row of two-dimensional Stuart vortices under the 
action of a couple of oblique modes (ka/2)~ + kz~, where kz is an arbitrary spanwise 
wavenumber, and ka corresponds to the streamwise spacing of the vortices. These 
modes correspond to a spanwise modulation of the longitudinal sub-harmonic perturba- 
tion which causes pairings. Pierrehumbert and Widnall find them unstable, the smaller 
their kz the larger their growth-rate (see Fig'. 6 of [5]), which could be the reason why 
quasi two-dimensional pairings are more often encountered in experiments than helical 
pairings. 

The persistance of the helical-pairing instability beyond the domain of validity of 
the linear-stability theory, which leads in our case to the formation of a A-shaped vortex 
lattice, might be ascribed to the development of a staggered mode, analogous to the 
one proposed by Herbert [12], on the basis of a secondary-instability analysis: 
in Fig. 1-a are sketched vortex lines or tubes of streamwise spacing Aa, oscillating in V z 
planes, 180 ° out of phase from one to another, due to the oblique modes (ka/2)ff4- kg3, 
with k~ = 2 ~r/Aa. In first approximation, one can assume that vorticity is stretched 
by the basic inflectional fluid motion. The vorticity of the peaks P will thus be con- 
vected along the upper flow, while that of the valleys V will be convected by the lower 
flow. This will lead to pairings as indicated in Fig. l-b, resulting in a vortex-lattice 
structure, which is highly three-dimensional. It seems that the same mechanism is at 
work in our calculations, with a slight difference: the three-dimensional unstable modes 
develop as from the beginning of the simulation, together with the fundamental mode 
kaY. Consequently, the helical-pairing process acts while the Kelvin-Helmholtz vortices 
form and not after this formation is completed, as assumed in [5]. However, since the 
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Figure 1. Schematic representation of the helical-palring instability, leading to a vortex-lattice 
structure. 

fundamental mode is more amplified than the other modes, this should come to the 
same thing.* 

The question of the statistical relevance of such helical pairings is of prime interest. 
In addition to the resemblance with the experimental results of Chandrsuda et al. [4] 
there are several proofs of the existence of helical pairings: 

- the present run is not an isolated case; M1 direct simulations conducted with 
the present numerical code in a cubic domain with a purely three-dimensional initial 
forcing, that is, about ten runs, have produced a similar vortex lattice: an example at 
a resolution of 643 (any other parameter being the same as in the present simulation) 
has been reported in Comte et al. ([13],[14]). 

- the helical-pairing instability has already been simulated numerically, by means 
of vortex-line methods [15]. By contrast with the present simulation, the initial per- 
turbation was there deterministic and consisted of the fundamental mode ka~ plus a 
pair of oblique modes, as suggested by Pierrehumbert and Widnall [5]. The calculation 
stopped at a stage very close to what is obtained here at t = 17 5i/U (see Plate l-a, to 
be compared with Fig. 38 of [15]). 

* Notice that the sketch of Fig.1 also applies to individual vortex filaments. It may 
be generalized to Herbert's staggered mode in a boundary layer (as already stressed), 
and to a flow submitted to a constant shear. 
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- helical pairings have just been found in three-dimensional direct-numerical sim- 
ulations of a weakly-compressible mixing layer computed by means of finite-difference 
methods [16]. Helical pairings thus do not result from a numerical artefact of the 
present code, and are somewhat statistically relevant. One might object that, both in 
the present study and in [16], periodicity is applied both in the streamwise and the 
spanwise directions. This imposes a high degree of symmetry to the vortex structure, 
liable to force helical pairings. However, Rogers and Moser [17] have performed many 
simulations with such boundary conditions; in all cases, their initial perturbation was 
purely deterministic, without a pair of oblique modes (k~/2)~ + kzfl, and no helical 
pairing was observed. The helical-pairing instability thus corresponds to a real physical 
phenomenon which occurs only if properly initiated, either by means of explicit forcing 
as done by Meiburg [15], or random noise as in the present calculations. 

Another important issue is the possible existence of a preferential spanwise wave- 
length. In no cases have we ever found a vortex lattice having a spanwise period differ- 
ent from the box's size: this is in agreement with Pierrehumbert and Widnall's findings 
[5] concerning the growth rate of the helical-pairing mode, which is, as said above, 
maximum when kz ~ 0. On the other hand, laboratory experiments ([18]-[19]) show 
branchings of the large rollers, with a spanwise spacing scaling on the vorticity thick- 
ness 8(t), and of the order of twice the fundamental wavelength [20]. This has also been 
found recently by Fouillet [16] in the case of a weakly-compressible spatially-growing 
mixing layer at a convective Mach number of 0.3. In our calculations, the longitudinal 
wavelength at the time when we observe the vortex-lattice structure is 2 ,ka, and the 
spanwise wavelength is 4 ,ka, which is in agreement with Browand and Troutt's labo- 
ratory observations [18]. New calculations in a larger domain (at least in the spanwise 
direction) are needed in order to see whether this scaling is preserved as time goes on. 
Spatially-growing calculations could be more relevant for such an investigation. 

4. - C O N T R O L L E D  T R A N S I T I O N  

We have repeated the calculation at a resolution of 643* with a quasi two- 
dimensional perturbation, taking ~2D • 10--4 and ¢3D = 10 -5- Plate 2 shows per- 
spective views of the passive-scalar interface 0 = 0 (a) and the vorticity field (b), and a 
top view of the vortex line (c) at t = 30 5i/U. In these snapshots, one can see two quasi 
two-dimensional rollers which slightly snake in phase, with a spanwise period equal to 
the box's size 4 ~a- Plate 2 also shows hairpin vortex filaments, disposed 180 ° out of 
phase with respect to the large rollers and stretched by them. This strongly resembles 
results of simulations performed by Ashurst and Meiburg using vortex-line methods [8]. 
It is also reminiscent of the translative instability [5] discussed above, and the associ- 
ated longitudinal vortex stretching mechanisms. The difference of phase between the 
spanwise oscillations of the large vortices and that of the hairpin filaments in the braid 

* as already stressed above, helical pairings have also been obtained at a resolution 
of 643, but without hairpin vortices ([13],[14]). Simulations of controlled transition at 
1283 are now in progress and will be presented in [21] 
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region might be ascribed to the emergence of a pair of oblique modes (k~/2)~4- kzff, as 
in the previous case. The main discrepancy lies in the extra amount of two-dimensional 
energy, which forces the pairing to occur in a quasi two-dimensional manner, instead of 
helically. Here again, the question of the spanwise spacing and its relation to theoretical 
[5] or laboratory experiment [2] results needs new temporal and spatial calculations. 

5. - C O N C L U S I O N  

We have shown, using three-dimensional direct-numerical simulations, that a peri- 
odic mixing layer, developing from a hyperbolic-tangent velocity profile, could be subject 
to a violent three-dimensional instability leading to a vortex-lattice structure if the ini- 
tial perturbation (of velocity fluctuation ,,~ 10 -2 U) was random and three-dimensional. 
This behaviour may be ascribed to the helical-pairing instability discovered by Pier- 
rehumbert and Widnall [5], and is triggered by a spanwise periodic oscillation of the 
subharmonic perturbation. This could explain the apparent dislocations of the  large 
rollers found in laboratory and numerical experiments ([18],[16]). 

On the other hand, calculations with a quasi two-dimensional random perturbation 
show the development of a weak translative instability of the large rollers, while thinner 
longitudinal vortices are stretched between them. 

It seems therefore that the vortex topology in a mixing layer may depend heavily 
upon the nature of the residual incoming turbulence. 
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(a )  (b) 

(c)  (d)  

(e )  

P l a t e  1: temporal  evolution of a temporal ly growing mixing layer forced by a three- 
dimensional per turbat ion  (natural  transition) 

- (a), (b) and (c): top view of vortex lines at t = 17, 22 and 30 ~ i / V  respectively. 

- (d) :  top view of the surface Ilall = 1 /3  ~ at t = 30 ~ / u .  

- (e): top view of the passive scalar interface O = 0 at t = 30 5i /U.  
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(c) 

P l a t e  2: temporal mixing layer forced by a quasi two-dimensional perturbation (con- 
trolled transition), at t = 30 6i /U:  

- (a): perspective view of the passive scalar interface 0 = O. 

- (b): perspective view of the vorticity field [iso-surfaces l~o=l = 1/3 wi (in light 
blue), w~ = 0.1 a~i (dark blue), and aJ~ = -0.1 wi (green)]. 

- (c): top view of the vortex lines. 
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Abst rac t :  Atmospheric flows often produce organized structures in 

the presence of strong turbulence. This organization property of two- 

dimensional turbulence is also observed in laboratory experiments 

and numerical simulations. After introducing different examples, it is 

shown that this organization can be explained in terms of equilibrium 

statistical mechanics on Euler equations. 

1. INTRODUCTION 

The formation of organized vortices is a striking property of 

two-dimensional fluid systems in strongly non-linear regimes. In the 

ordinary middle latitude weather regime, a global flow structure with 

the shape of a wavy eastward jet propagates eastward, and the 

succession of low and high pressure at a given location results from 

the passage of the troughs and crests. By contrast in the so called 

blocking regime, an anticyclonic vortex can stay over a given area for 

months without significant evolution and maintains a persistent 

drought. The switching between these two regimes is relatively fast 

and difficult to predict. The polar vortex in the stratosphere is 

another example of organized structure. It persists during the polar 
night and its core material seems isolated from the outside in spite of 

strong fluctuations of shape. The ozone hole forms inside this vortex 

core, and this container effect probably plays a key role in the ozone 
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depletion by preventing mixing with the outside. In the jovian 

atmosphere, the Great Red Spot has been observed to persist for more 

than 300 years in a strongly turbulent shear flow, and other similar 

vortices have been recently discovered on the Giant Planets[l]. The 

energy of these motions is brought by thermal effects and the 

formation of vorticity is due to the Coriolis force. However the typical 

time of forcing and dissipation is often longer than the time of 

horizontal advection and mixing. Therefore it is reasonable to explain 

the observed structures as an inertial organization of the flow rather 

than the direct consequence of driving mechanisms and instabilities. 

For such inertial flows (i.e. purely adiabatic motion), a key 

constraint is the conservation of the local angular momentum, called 

potential vorticity. Different expressions for the potential vorticity 

have been proposed, taking into account the planetary curvature, 

topography and vertical stratification. The structure of the equations 

is then similar to the Euler equations, with the vorticity replaced by 

a potential vorticity. In the simplest case, one gets the quasi- 

geostrophic equations or even the two-dimensional Euler equations, 

and we shall only discuss here the theory for this latter case. The 

organisation into inertial structures can also be observed in 

laboratory experiments in rotating tanks [2,3]. Similar equations are 

also used to model plasma flows in a magnetic field [4]. 

Since energy is conserved by the Euler equations, it is tempting 

to explain the global organization of these strongly stirred flows in 

terms of equilibrium statistical mechanics (Notice however that this is 

possible only in two-dimensions, where the regularity of the solutions 

for all times has been proved. In three dimensions singularities are 

believed to appear after a fairly short time, as the energy cascade 

sets up). However this problem is made difficult by the infinite 

dimension phase space corresponding to a continuous field. The 

problem was first adressed by Onsager [5] by modelling the 

continuous field with a finite set of point vortices. Onsager and his 

successors were able to explain the formation of organized vortices as 

blobs of point vortices with the same sign, forming for negative 

temperatures. However this gaz of vortices is not incompressible 
(although the induced velocity field is divergence free) and this leads 
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to contradiction with the continuous Euler equations. Another way to 

approximate the Euler equations is to expand the velocity into a 

Fourier series and truncate the description up to a finite number of 

Fourier modes [6]. The high wave-number truncation is purely 

artificial: it as necessary to suppress the ultraviolet divergence of 

classical statistical field theories. After the truncation, only two 

constants of the motion remain, energy and enstrophy (integral of 

the vorticity squared), while in the initial Euler equations the integral 

of any function of the vorticity is a constant of the motion. This 

theory deals only with energy spectra, and is not able to predict 

spatial structures. 

A new statistical theory which explains the emergence of 

organized structures in two-dimensional  turbulence has been 

proposed by Robert [7] and developed in Robert & Sommeria [8]. It is 

summarized in next section. A similar idea was proposed by Miller [9] 

but without a less rigorous justification, as discussed by Robert [10]. 

2. THE MAIN FEATURES OF THE STATISTICAL THEORY: 

In its simplest form, the theory applies to an initial condition 

with piecewise uniform vorticity (which can be an approximation for 

any regular initial condition). The boundaries of these vorticity 

patches become in general more and more intricate as time goes on, 

but the area of each vorticity patch is conserved, as well as the total 

kinetic energy of the system. This formation of smaller and smaller 

vorticity scales can be considered as a manifestation of the enstrophy 

cascade. The goal of the theory is to predict the final state, at the end 

of this cascade process. 

Since the vorticity contours become so intricate, we are not 

really interested in the exact vorticity field. Indeed the velocity field 

results from the spatial integration of the vorticity, so that it does not 

depend on the fine scale fluctuations of the vorticity: it depends only 

on its local average. In fact, to exploit the whole information given by 

the constants of the motion, we are led to consider a macroscopic 

description of the system by introducing the local probability 
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dis t r ibu t ion  ei of the different vorticity levels a i  in a small 

neighborhood. Therefore we define a macroscopic state as the field of 

these local probabilities, while an individual vorticity field is called 

here a microscopic state. We consider all the vorticity fields with the 

same constants of the motion as the initial condition. It was proved 

[7] that "most" of these accessible microscopic states are very "close" 

to a well defined macroscopic state. This state is obtained by 

maximizing an entropy functional, with the constraints due to all the 

known constants of the motion. Assuming that the system explores 

fairly uniformly all the accessible microscopic states, taking into 

account all the constants of the motion (an ergodic hypothesis), we 

conclude that the system is then most often near this state of 

maximum entropy. 

The entropy density can be obtained by considering partitions 

of a small surface element into equal area pieces filled with the 
different vorticity levels a i,  and counting the number of completions. 

In the limit of a very fine division, physically obtained after a long 

time of evolution, an expression analogous to Bolztmann mixing 

entropy for the different vorticity "species" is thus obtained (by 

integrating over the position vector x in the whole fluid domain ~)) 

f 
= - |  Z ei(x) Log ei(x) dx, S 

L i 

The equilibrium states are obtained by maximizing this entropy 

under the constraints that the total area of each vorticity level and 

the total energy must correspond to their value in the initial flow 
condition. The Lagrange parameters, the "chemical potentials" cq and 

the "inverse temperature" 13 are associated with these constraints. The 

variational problem yields the optimal probability densities 

e i (x )  = exp  (- i [3 oq 
Z( ' e (x ) )  
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where W is the stream function associated with the locally averaged 

o~ by the relation -A~=o~ and the partition function Z is vorticity 

given by 
n 

Z(W) = ~ exp (- ¢zi- [3¢xi~P) 
i=l 

The total energy of the flow is equal to the integral of N~ .  The term 

a iW can be then interpreted as the energy of the vorticity parcel in 

the stream function ~t' due to all the other vorticity parcels, therefore 

the expression corresponds to a mean field theory. The denominator 

represents a Fermi like exclusion due to the fact that the vorticity 

parcels form a partition of the space and cannot overlap. The 

Onsager's theory yields the same mean field relation without the 

denominator, so that it is analogous to the classical limit of a Fermi 

distribution. This corresponds to the fact that the point vortices can 

pack closely together without limitation. This Onsager's relation is 

recovered here when the vorticity patches are diluted in a sea of 

irrotational fluid, so that the mutual exclusion becomes marginal. The 

partition function is then dominated by the zero vorticity level and is 

close to 1. 
The optimal state • is determined as a solution of the 

differential equation 

d LogZ ),} 
• ~ d ~  

~ =0 on a~) 

We get a relationship between the locally averaged vorticity and its 

stream function, which characterizes a steady solution of the Euler 

equations. The theory selects one state (or several in case of multiple 

solutions) among all the possible steady solutions of the Euler 

equations. In the presence of a very small viscosity, the local vorticity 

fluctuations are smoothed out, and this locally averaged vorticity 

should become the actual steady flow which emerges from strong 
turbulent mixing. In the absence of the energy constraint (13=0), a 

uniform vorticity is obtained, like for the mixing of dyes. For 

positive or negative but above a bound given in Robert & Sommeria 
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[8], the solution for the optimal state is unique, and the vorticity 

distribution fills fairly evenly the fluid domain. However for 

sufficiently negative 13, a variety of bifurcations can occur and lead to 

symmetry breaking and isolated vortex structures. Some general 

properties of the solutions are given in [8], in particular the 
relat ionship between ~ and • is always monotonous. For a 

quanti tat ive prediction with a specified ini t ial  condit ion,  the 
determination of the Lagrange parameters tx i and [~ is a difficulty. 

Indeed they are only indirectly given by the constraints on the 

constants of the motion which the solutions of the equation must 

satisfy. 

3. TESTS AND APPLICATIONS: 

We have tested the theory by direct numerical computation of 

the Navier-Stokes equations [11]. A numerical test of the theory, 

using Euler equations, would be limited by the production of vorticity 

structures at increasingly fine scales, which become rapidly out of 

reach of any numerical scheme. Therefore, with any numerical 

method, a subgrid scale modelling is needed to compute the long time 

behavior. Such modelling should be able to smear out correctly the 

local vorticity fluctuations, while conserving the total energy and 

circulation. In the absence of any known subgrid scale modelling with 

these properties, an ordinary viscosity was chosen, therefore solving 

the Navier-Stokes equations. The laplacian term locally averages 

vorticity, and the total energy decays only moderately when viscosity 

is small. The theory was tested in the case of a shear layer, in which 

the initial vorticity i s  uniform and limited to a band (with smoothed 

edges). The development of the shear instabil i ty and merging 

processes strongly mix the vorticity with the surrounding irrotational 

fluid. Then a final vortex is formed (Fig.l), which is nearly a steady 

solution of the Euler equation (very slowly diffusing by viscosity). 

Since the boundary conditions are periodic in the direction of the 

initial band, this final vortex is rather a periodic chain of vortices. 

This geometry is chosen for its simplicity, but it is similar to an 
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Fig.l :  Successive snap shots of the vorticity field in a numerical 
simulation of a shear layer(from [11]) leading to a steady final vortex. 
The domain is a channel with periodic boundary conditions in x and 
the numerical resolution is 256 x 256 grid points. The time unit 
corresponds to a typical inertial time. 
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Fig.2 : Scatterplot of Log o~/(a-o~) 
versus stream function for 

the points of the last field in 
Fig.1. All the points collapse 
on a single line, which shows 
that the flow is very close to a 
steady solution of the Euler 
equations, the predicted linear 
relationship is well verified in 
the vortex itself. 
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annular geometry, as found in laboratory experiments [2] and in the 

atmosphere of the Giant Planets. 

Since the initial state has only one non-zero level a, the 

prediction of the theory can be quantitatively tested by checking that 
Log o~/(a- o~) is a linear function of • (Fig. 2). We find indeed an 

excellent agreement in the mixed zone. However we observe that the 

mixing is restricted to an active zone and does not fill the whole 

domain. We do not know whether the mixing would continue to 

expand in a longer calculation, and with higher spatial resolution, or 

whether there is a fundamental limitation for mixing. 

The prediction of the theory can be also tested by solving the 
equation relating co to ~, and a bifurcation leading to a vortex chain is 

indeed obtained. In the limit of Onsager's theory, and for a wide 

domain, the equation has an explicit solution and the bifurcated 

branch of solutions then identifies with the family of Stuart's vortices. 
These vortices are more and more localized in vorticity as 1~ becomes 

more negative, but the stream function is always widely spread. By 

extending the theory to a quasi-geostrophic model suitable for the 

atmosphere of Jupiter, one can get a vortex which is also isolated in 

term of stream-lines, as observed for the Great Red Spot of Jupiter 

[12]. The agreement in structure is remarquable. Therefore the 

robustness of such an isolated vortex is no more paradoxical. On the 

contrary it appears as the ineluctable result of complete mixing, when 

the right constraints are taken into account. Wavy jet structures can 

also be obtained in other configurations corresponding to atmospheric 

eastward jets, which would explain the robustness of such jets. The 

theory is also able to explain experimental flow structures obtained 

in a circular domain [13]. 

4. CONCLUSIONS 

This theory reconciles organized structures and statistical 

description for two-dimensional flows. It is in the same spirit as 

Onsager's theory but it solves its inconsistencies. The conservation of 

all the known constants of the motion is taken into account. In 



240 

particular the total enstrophy of the final equilibrium state is equal 

to the enstrophy of the initial condition. However this enstrophy is 

contained partly in the mean flow and partly in the local 

fluctuations. There is thus an irreversible transfer of enstrophy 

toward the very fine scale fluctuations (where it can be dissipated 

by a weak viscosity). This result is therefore consistent with the idea 

of an enstrophy cascade. However the system keeps track of all the 

conserved quantities, even after the fluctuations are smoothed out, 

and the result is different from the minimum enstrophy vortices 

proposed by Leith [14]. While Leith predicts a final structure which 

depends only on the robust constants of the motion, the energy and 

angular momentum or circulation, the final state predicted by the 

present theory depends in addition on the whole distribution of the 

vorticity levels. However the qualitative behavior does not seem to 

be sensit ive to this vorticity distribution. The application to 

atmospheric models with one or several vertical layers could 

provide a conceptual basis for modelling flow regimes on long time 

scales in climatic systems. Applications to plasma flow structures 

seems also to be promizing. From the point of view of general 

physics, the usual ultraviolet divergence of classical field theories is 

removed by taking into account the local conservation of vorticity, 

unlike in spectral models. It is remarkable that the statistics is very 

different from the statistics of an ensemble o f  atoms, in spite of the 

fact that the fluid is really made of atoms. 

The computations have been performed on the Cray 2 of the 

CCVR at Palaiseau. The author wishes to thank R. Robert, C. Staquet, 

M.A. Denoix and T. Dumont for their participation to this work. 
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Abstract 

It is shown that when the stability spectrum of a system has degeneracies at critical values of a control 

parameter, below which the system is stable or marginally stable, it may develop instabilities due to the inter- 

action of the degenerate critical eigenmodes. When the spectrum is discrete all instabilities close to criticality 

are expected to stem from such degeneracies, though not all degeneracies need lead to instabilities. Two 

examples are briefly reviewed: the instabilities of two dimensional Stokes waves and those of an elliptical 

vortex. 

I. Introduction 

It is common knowledge in quantum mechanics [1,2] that when a small off diagonal perturbation is appl- 

ied to a system having a degenerate spectrum, it leads to the lifting of that degeneracy and to the creation of 

a gap in the spectrum (also known as an avoided crossing). Consider, for example, the following simple 

Hamiltonian matrix (as a function of the parameter x): 

where ~ is a "small" perturbation. When ¢=0, the spectrum of H is: A(~ °) ffi + x having a degenerate point at 

x=0. For finite values of ~ the spectrum is: A+ = + v / - ~ ~ .  The degeneracy has been removed and a gap of 

"forbidden" energies has arisen disallowing values between -I,I and I'1. This, seemingly trivial, result is of 

significant consequences in such fields as solid state physics and chemistry. Its importance, when generalized 

to Hamiltonian systems of arbitrary dimensions, was realized already by Weierstrass [3] and has been investi- 

gated by numerous researchers (cf., e.g., ref (4)). It seems that notion of the importance of spectral degener- 

acies has not percolated as deeply into the field of fluid mechanics as it has into quantum theory. Neverthe- 

less, the problem has been considered in the realm of fluid mechanics. For example, in the study of the sta- 

bility of Stokes waves it has been noticed that eigenvalues of the problem may cross. Mackay and Saffman 

[6] and later Kharif  and Ramamonjiarisoa [7] have investigated the role of eigenvalue crossings in determin- 

ing the stability of Stokes waves. They have made heavy use of the Hamiltonian nature of the pertinent 

dynamics and tested their results using numerical methods. 

The aim of the present work is to demonstrate that similar ideas can be relevant to nonhamiltonian stabil- 

ity problems and that, at least in some cases, these same ideas provide useful analytical tools for the investiga- 

tion of hydrodynamic stability problems. The structure of this paper is as follows. Section (II) provides a 

formalism, explaining how spectral degeneracies are relevant to stability problems. Section (III) presents a 

sketch of the derivation of the stability properties of two dimensional Stokes waves. In Section (IV) a brief 
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description of the relevance of our results to the problem of stability of an elliptical vortex is presented. Sec- 

tion (V) provides brief summary. 

II. Linear Stability and Degeneracy.. 

ILl. Consider first the following "stability" problem: 

[x E Io i ~ =  c2 (2.1) 

When the perturbations ex and e2 vanish, the solution of eq. (2.1) can be clearly written as: u ffi aeiXt+be -ixt, a 

and b being the correponding eigenvectors of the stability matrix; the problem is then marginally stable. 

When nonzero values of ~ ,  ¢2 are considered, the eigenvalues of the matrix in eq. (2.1) are: A± = ± [x2+ex~ 2. 

In particular when ¢1c2 is real and negative, i.e., A± = ± ~ ] ~ % - [  one obtains an instability in the neighbour- 

hood of x=0, i.e., for Ixl < I,,,21. Unlike in the case of a hermitean matrix, mentioned in the Introduction, a 

nonhermitean perturbation may give rise to instability in the neighbourhood of the crossing point. Notice 

that as long as ~,%<0, this instability will occur for any absolute value ]cx<,. I. Consider next a quasidegenerate 

situation, e.g.: 

i / ~ =  u (2.2) 

When ~=0, the system is only "quasidegenerate" (for 161<<1), i.e., no true level crossing occurs. When ~ 0 ,  the 

spectrum of the matrix in eq. (2.2) is ;~± ffi ± ~ ,  leading to an instability when 1,1>1'1 a~d Ixl> ~¢Z~v-~ ~. 
This is an example of a finite amplitude instability occurring when two eigenvalues are close to being degen- 

erate. Then a finite value of  the perturbation is needed to trigger the instability. While the case of many 

levels and many level crossings is technically more complicated, the basic idea sketched here is still the essen- 

tial mechanism. 

Consider a system described by N degrees of freedom (including N = ~ )  whose linear stability equations 

can be written as follows: 

i fi ffi Lo(X)U + eLI(x)u (2.3) 

Here x is a (control) parameter and eL x is a small perturbation. Assume that L o has a real spectrum {~(n°)(x)} 

and that some pairs [~(°,), w{n°2)] can be degenerate for some values of x. The right and left eigenvectors of 

Lo, corresponding to cv(°)(x) are denoted by vnR(x) and Vn~(X), respectively. Let (v~n-u) - a n ( x , t  ) and 
L R (VnLlVm) --- Tnm. Assume further that T is a real matrix. It follows that (for a given value of  x): 
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i h - to(o) an +¢ 2 Tnm am (2.4) 
m 

Lee a(x, t)  = e-tw(x) t a(x,0).  The set of  values of  to that solve eq. (2.4) is the spectrum of  the stability prob- 

lem. When Im(to)>0, one obtains an instability. Since ¢ is assumed to be small, one expects ton-to(n °), with 

obvious notation. Letq0~2be a nondegenemte eigenvalue of  eq. (2.4). Then, from eq. (2.4): 

I to-  to(n02 -eTn°n° l  an°=e  2 Them am (2.5a) 

m#fn o 

n $ n o 2 ((to - to(no))6nm - CTnm) am ffi ~ Tn% ano. (2.5b) 

m~n o 

Let T'nm = Tnm for n,m#n o, R'nm = ( t o - t o n ) t h i n  - C T ' n m  for n,m~0 (i.e., T" is the same as T with row n o and 

column n o removed). Then from (2.5b): 

e -I 
a m f e R m g T / n  o a %  , m # n  o (2.6) 

It follows from (2.5a) and (2.6) that: 

tO - to(n0o } - CWnono Tno m R rag T~,n 0 
m~n o l~n o 

(2.7) 

When o~dn*~ ° and tone is not degenerate or quasidegenerate with any other eigenvalue, one can easily deduce 

that: (1) R '  is invertible for small enough ~ (2) to is real to all orders in ¢ and eq. (2.7) can be used to gener- 

ate an appropriate perturbation theory for to. 

Consider next the case of  to(°)fto(°)¢to(°) jCnx,n z, i.e., of  two degenerate modes. A similar procedure to n 1 n~ J 
that outlined above (i.e., by projecting out all modes except for n~ and nz) yields: 

det 

to-w(no.)-¢Tn n -~:ZTn m'~'k'Tk~ 
1 I I I 1 

-CTn2n 1 - ('Tnzm' ~ ' t . 'T l 'n  x 

-¢Tnx% -¢2Tnxm'~'k'Tg'n , [ 
to-to(°)-¢T n n -cZT. m'~'n,Tg. I 

2 Z $ Z 2~ 

•0 

(2.8) 

Here: ~n'm" = (to-ton'ta'm ' - eTa're'; n ' ,m'#nx, nz). ~ d o e s  not have rows and columns n a and n r The summa- 

tion convention is assumed in eq. (2.8) and all quantities denoted by ( )' are assumed to exclude n I and n r 

The diagonal terms are degenerate for some value x o of  x and ¢=0. Let fl(to, x,c) and fm(to, x,e) denote the 

(1,1) and (2,2) terms of  the matrix in eq. (2.8). To linear order in ¢ and x-xo: 
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dw(°) 
fl,~- = to - o~{n°) 2(Xo) - (X-Xo) nl'2 

, d x  x 0  " (:Tnl,2nl,2 (x0) (2.9) 

The linear system of (two) equations, fL2=0, can be solved in the neighbourhood of x=x o, c=0, to yield 

x=xc(e), to=-oJ~(¢), such that fl,2(o~(c), x~(¢), ¢)=0: 

(Tnlnl(X o) - Tn2nz(Xo)) 
x e (~) = x o + (2.9a) 

dt°..__~n~ ] -dtan.___& l 

dx I xo dx I xo 

don, Xo ] [ ~ ] x  ° Tnxn: - d~ Tn~n~ 

oJ, (0  = w(°~)% + (2.9b) 

d~2,l _ do"__:l 
dx IXo dx Ix ° 

The condition of solvability is that the lines wna(x ) and oGz(x) cross each other at the point of degeneracy 

and are not tangent there: a rather mild restriction (else higher orders have to be considered). Clearly, the 

existence of points x c and to c to all orders in c can be demonstrated for large classes of systems (~ being not 

a T n  n 
ffi O)-OJ +~ ' q  9-"1 2 too large). Thus: fi,2(o~,x,~) c 0x x~ (x-xc) to linear order with an obvious generalization to 

nonlinear orders. Let A:, 2 and A2.1 be the nondiagonal terms in the matrix in eq. (2.8). Then eq. (2.8) imp- 

lies: 

°'°' I J' 
= % - - ' - ' T - - -  (x  - x , )  ± (x  - x , ) 2  + z x , , x ,  (2 .10)  

Ofl 2 [ 
where cq ~=--~x" , and only the linear order in x-x c and ~=w c in the diagonal terms of the matrix of 

XmX c 

eq. (2.8) has been taken into account. Eq. (2.10) spells instability when AxA2<0 and ]x-xc[ is small enough. 

In summary, we have shown that when two eigenvalues cross (at w(°)) for ~=0 and X=Xo, their interaction 

shifts the "effective intersection point" to we and x c and (if AiA~<0 ) a neighbourhood of  x c (of size 2[AxA2D 

has an unstable mode, whose growth rate is given by Imo~, cf. eg. (2.10). The largest growth rate is for x=x o 

i.e., ~ A ~ .  In some cases, Tnxn ~c~x-n:] (see below). Then the growth rate for modes which are "far 

apart" ([nl-n2]>>l) may be negligibly small rendering them essentially stable on time scales of interest. 
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III. Instabilities of Two Dimensional Stokes Waves (8) 

The history of the research of water waves is very curious. Following the pioneering work [4] of Stokes 

in 1847, a debate of many years, concerning the very existence of propagating water waves of permanent 

shape ended with the publication of the rigorous proof [I0] by Levi-Civita in 1925. The latter has been gen- 

eralized by Straik [11], Krasovshii [12] and others. In the early sixties, no one questioned the physical and 

mathematical existence of Stokes Waves. 

It therefore came as a shocking surprise, when Benjamin and Feir [13] demonstrated in 1966 that Stokes 

waves were linearly unstable. Furthermore, it has been found by later investigators [5] that Stokes waves had 

numerous instabilities, perhaps an infinite number of them (in the absence of viscosity). These results do not 

imply that not-too-steep waves cannot be observed, since the growth rates of the instabilities are rather small. 

The fastest growing instability is the one discovered by Benjamin and Feir and it has the effect of disintigrat- 

ing wave-trains of Stokes waves. Below we present a brief derivation of stability properties of two dimen- 

sional Stokes waves, from the point of view described here. In addition to discovering an infinite number of 

instabilities, we gain another benefit" an ordinary differential equation describing the dynamics of short 

waves riding on long (Stokes) waves. Consider an irrotational flow of infinite depth, described by a potential 

and a free surface 7- The equations of motion and (-oo < x < oo): 

ZX~ = 0; -oo _< y < ~(x,t) (3.1a) 

~ + a A ~  aA. 0t 0x 0x ffi 0y ' y ffi ~/(x,t) (3.1b) 

~+ l ( v f f ) ~ + g o = 0  ; y=~/(x,t)  (3.1c) 

where g is the gravitational instant. When nonlinear terms in (3.1) are dropped - the equations allow for 

plane wave solutions (linear Stokes waves) whose spectrum is: to = +x/~-~", k being the corresponding wave 

number. The stability analysis of finite amplitude waves is facilitated when the following transformations are 

made: (a) The semiifinite domain -oo < y < ~(x, t) is conformally mapped onto a half plane -oo < v _< 0, -oo < 

u < pp. (b) small perturbations of the original interface are treated linearly in the amount of change of 7. A 

resulting eonformal map of the interface e + 6r/, to linear order in 6r/, onto a half plane is derived. (c) Since 

the equations in the transformed half-plane (u,v plane) correspond to a fixed domain, one can linearize 

arround the solution of intetest (in this case, the Stokes solution). (d) It is convenient (and possible) to cast 

the resulting stability equations into a single integrodifferential equation. The details of the derivation are 

too lengthy to reproduce here, the reader is referred to reference [8] for full details. It is convenient to con- 

sider the system in a frame of reference in which the basic (Stokes) wave is stationary. In this frame, due to 

the Doppler shift, the spectrum is: to ffi ck + v C ~ ,  where c is the phase speed of the basic wave. 

Let T(x,t) be the point in the (u,v) plane corresponding to (x,~(x,t)) in the physical plane. Then T(x,t) ffi 

f(xdT(X, t), t), where f is the real part of the analytic function f+ig mapping the physical plane onto the tran- 

formed one. The interface of a Stokes wave, I/o, is mapped to: (f0Io),0) in the (u,v) plane. Hence, a pertur= 

bation of ~/o is mapped to a value of v: Av ffi g(x,rlo + 6~,t) = ~ 6r/= ~ 6r/. The function 6v can be shown 

[8] to satisfy the following interodifferential equation (assuming a time dependence citer). • 
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where: " /=  jl+~/o2 and 

2g~r ~" (r/°I) = c - - - ~  ~"  

I - - l ' f  du '  [ i~, ~ ._6v(u,)+ d 6v(u,)l 
_ ~'2-u-u - c T '2 

(3.2a) 

(3.2b) 

In spite of its somewhat cumbersome appearance, eq. (3.2) is easy to analyze. Notice that this equation 

can be writ ten as follows: 

(~o2 L~ + ~L x + Lo)6V = 0 (3.3) 

where L o, L x anmd L z are l inear  operators, independent of ~0 and periodic in u (since they all depend on the 

periodic shape of the Stokes wave). In other words, eq. (3.3) is a Floquet problem. That  the stability equa- 

tion for Stokes waves should be of the Floquet type is a-priori  clear, one linearizes around a periodic solution 

(both in the physical plane and the transformed one), rendering the coefficients periodic functions of space. 
27r Let kea = 70  ° a be the steepness of the basic Stokes wave, A being the wavelength and a - the amplitude. 

Denote: ~ = ken. When ¢=0, the problem is reduced that that of the stability of a zero amplitude Stokes wave 

(a semiplane). The solutions are: 6v~e iku and ~o = ck + v ~ [ ,  as expected. Taking into account the Floquet 

nature of the ~#0 problem, it is convenient to write the ~=0 limit as 6v = elq u e inkou , where 0 _< q < k o. Fol- 

lowing Floquet's theorem the eigenmodes of the stability problem can be written as follows: 

= e,° Z (3.4) 
n 

AS e-~0, A n ---. 6n, m. The corresponding eigenvalues, as c ---. 0, are: w (u) = C(nko+q) + u ~ ,  where u = 

+ 1 (corresponding to left or right moving perturbations). The full integrodifferential equation (3.2) does not 

couple solutions having different values of q. Thus one can consider the spectrum to depend on 4 parame- 

ters: 

1. The value of q. 2. The value of n (determined by the c ~ 0 limit). 3. The value of ~. 4. The sign a 

(determined by the ¢ --* 0 limit). 

It is convenient to regard 0 _< q < 0 as a variable parameter (equivalent to x in  the simple example above) 

and the various eigenvaluas as functions of q. The parameter ~ is to be regarded as the perturbation. From 

this point of view it is clear that (since the zeroth order, in ¢, spectrum is real and discrete) one expects 

(linear) instabilities only at crossing points of the zeroth order spectrum and finite amplitude instabilities at 

values of (q,a) for which two eigenvalues are close enough. In this paper we shall deal only with the former 

case. A preliminary step would thus be to f ind all possible degeneracies of the zeroth order spectrum. Def-  

ining k o as the scale of wavenumbers and cko - g ~ o  as the frequency scale, all degeneracies can be found by 

solving: 



2 4 8  

n l + ~  + a , I  n,+~] 

where nx,n ~ are integers, ~ = q/k o and ~ = ~ = 1. 

1) 

2) 

3) 

4) 

5) 

= n 2 + q + %  l n~+q I 

All solutions of eq. (3.5) appear in the following list (t  is any possible integer): 

o + v ~  = o -  v~- -  1 -  v ' i  = -  1+ 4 i  

1 2 - t +  4 +  1 2 - l +  = 1 2 + t +  4 -  l z + t +  21 

z2 + 4 F  = (l+1)2 - 

- ( l z + l + l ) +  + l z + l + l +  = -  (1~2 - l + 1 )  + - 1 ~ - t ~ ÷ 1 -  ~ 

-(1~ z + 2 l + l ) + ~ + 2 g + l  = - l  2 - ~  

(3.5) 

In eases (1), (3) and (5): q=0. In ease (2): q = ~. In case (4): q = . It can be shown that case (1) corres- 

ponds to the Benjamin-Feir instability whereas the other cases correspond to high order (in e) instabilities, (to 

leading order in e, only modes n = + 1 contribute). The spectrum corresponding to n I = 1, n, = - 1 is: 

~°=2g+ - - T  (3.6) 

and it is in full agreement with known results (13). Instead of dealing with the high order instabilities 

directly we wish to show here how high wavenumber instabilities can be dealt with by transforming eq. (3.2) 

into an ODE. 

It follows from general considerations that the amplitude An, m scales as ~l"-ml for not too large values of ¢. 

Similarly, if  we write ~/o(u) = b n cos(konu ) then b n oc e l l .  The same holds for quantities such as T, 2 

n 
appearing in the integrand of  eq. (3.2b). Hence if a mode having a large value of n (e~. eq. (3.4)) is consi- 

dered and if, for example, n is positive, then the Fourier expansion of the term in the square brackets in eq. 

(3.2b) can be considered to consist of a sum of the type eiq u E dmelk°mu the error being at most 0(ca+l). 

8Lku, m>0 
Since P S ~ du" = ilr sgn(k)e iku, it follows that up to an error 0(c n+l) the integral I in eq. (3.2b) can be 

replaced by the integrand multiplied by i~r. Upon doing so eq. (3.2a) becomes an ODE for 6v: 

~6v" + (2wa + n~ + i~')av' + [ ~r'a' ÷ i~'] av--O ~/ (3.7) 

[½ .o.; l l w h e r e : a =  ~ and f =  - ,lz j ~ "  



249 

Upon defining a new variable r. 

d_.sr--_ 1_- (3.8) 
du 217 o 

and noting that in our convention (cf. eq. 3.1c) with ~b = 0) r/o < 0, we obtain, in the new variable, 

- i f l  2_2i~ ~ ~ v = 2 i  ~ ( fx~v)  (3.9) 

where fl = ~ % ffi v ' ~ ' ,  f is the average of f over a wavelength ~ and fx ffi f - ~" The l.h.s, of eq. (3.9) 
0) 0 

has no r dependence. The r.h.s, depends on r through fl ,  which can be shown to be 0(¢3). Thus, to order ~3 

the high wavenumber spectrum is of the form: 

ffi Q ± ~ (3.1o) 
~o 

where IQI>>I is a real number and: 2~ = l+c~+0(ea). The instabilities come about due to the r.h.s, of eq. 

(3.9). 

Using a procedure similar to that explained in section II, one can show that any pair of degenerate eigen- 

modes corresponding to (nx, n2) leads to an instability, whose maximal growth rate scales as: ~ lax'n21. The 

value of q for which the maximal instability occurs is shifted by 0(~ 2) with respect to the value of q corres- 

ponding to the zeroth order level crossing and the real part of the eigenvalue is also shifted with respect to its 

e=0 value by 0(c2). The range of unstable values q, around qe (corresponding to the maximal growth rate) is 

0(~2). Furthermore, the corresponding eigenmodes have their highest amplitudes at the forward side of the 

basic wave, near its peak (i.e., in the direction in which the basic wave mo,¢es). 

The theory outlined here is readily generalizable to include surface tension and viscuous effects. A three 

dimensional generalization is also feasible. 

IV. The Instability of an Elliptical Vortex 

While a full understanding of the transition to turbulence is still lacking, there has been significant pro- 

gress in identifying instability mechanisms, which are responsible for the destabilization of laminar flows, 

such as parallel shear flows [15]. Following the establishment of the existence of linearly unstable modes in 

such flows, it has been shown that (at lower Reynolds numbers) the system had finite amplitude nonlinear, 

two dimensional travelling wave solutions [16]. The latter are unstable to three dimensional perturbations, 

which could be precursors of a fully developed turbulent state. It has been noted, in particular, that elliptical 

streamlines give rise to strong three dimensional instabilities. 

A model consisting of a single (infinite) vortex having elliptical streamlines has been shown [17-19] to 

possess three dimensional instabilities on all scales, limited only by molecular viscosity. In our own work [14] 

we have performed a full stability analysis of the elliptical vortex (including the viscous terms). Our findings 

are as follows: (a) The stability problem can be reduced to a Floquet type equation (like in the Stokes' waves 
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case). (b) the eigenmodes of the problem form a complete set (though the equation is not self adjoint). (c) In 

the limit of zero eccentricity the spectrum is doubly degenerate and neutrally stable. (d) All unstable modes 

for small values of eccentricity stem from degenerate eigenmodes at zero eccentricity, the maximal growth 

rate being proportional to the eccentricity. (e) At finite or high values of eccentricity, the growth rate of 

unstable modes (in the inviscid limit) is logarithmic in the eccentricity. (f) The Greens function correspond- 

ing to the linear (stability) analysis equations is localized on cones of elliptical cross section in the inviscid 

case and strongly localized (for finite times) in the viscous case. The latter result is of importance since it 

justifies the use o£ a single vortex for the stability analysis: since instability is shown to be a local property of 

the (elliptical) flow, the fact that the far field is not necessarily elliptical or does not "belong" to the same 

vortex is immaterial. Duo to space limitations we shall not dwell here on the technical details of the analysis, 

and we refer the reader to ref. [14]. 

Summary 

The interaction of degenerate modes has been shown to be an important source of instabilities and the 

search for such modes - a useful technique to find instabilities. In some cases all linear instabilities can be 

traced to this mechanism. Moreover, the method is not limited to Hamiltonian or nondissipative systems. An 

obvious generalization would be a nonlinear stability analysis based on the linearly unstable modes. To con- 

elude, and perhaps further demonstrate the power of the method we wish to consider a case in which insta= 

bilities follow from a well known parametric resonance, i.e., the Mathieu equation. Consider. uax + (a z + 

~cosx)u = 0. When c=0, the spectrum is the set of all negative numbers (-aZ). Since the problem is of the 

Floqnet type, one can write a general solution (for c=0) as elnx+iq x where n is an integer (e ir~ has the 

periodicity o£ the equation) and 0 < q < 1 is a "Floquet exponent'. For a given q (as before, different values 

of q are uncoupled). The condition of degeneracy is: (n+q) z = (n'+q) 2, where n ,n '  are integers. A solution 

1 (then n' = - n - l )  and, as is well known, this accounts with n~n" is possible only for q.=0 (i.e., n=-n') or q = 

for all small ~ instabilities (the beginning of the known tongues). 
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Non-linear stability of plane Couette flow 
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1 Historical  background 

Most geophysical and astrophysical shear flows can be approximated locally by the plane 
Couette flow, a plane parallel stream of constant shear (i.e. of constant vorticity). No 
one could have ever dreamt about a simpler shear flow and yet, the determination of its 
stability characteristics turns out to be a hard nut to crack. As early as 1936, Taylor 
proved in a series of experiments the unstable nature of the plane Couette flow. In 1956, 
Reichardt undertook a new set of experiments and was able to exhibit a critical Reynolds 
number characterising the transition between laminar and turbulent state. Using the 
channel width as the characteristic length scale, this critical Reynolds number was found 
to be of the order of 1500. 

On the theoretical side, progress came more slowly and it is only in the early seventies 
(e.g. Romanov, 1973) that the linear stability of plane Couette flow was unambiguously 
proved. The confrontation of such a result with the previous experiments led to the 
suspicion that instability in plane Couette flow was of non-linear nature and generated by 
finite-amplitude perturbations. For a long time, no rigorous proof a such a conjecture nor 
complete characterisation of the instability (e.g. dependence of the threshold amplitude 
with the Reynolds number) have been available. The main problem lies in the intrinsic 
"infinite nature'aof the bifurcation occurring in the plane Couette flow, while most of the 
methods to explore the non-linear stability are only deviced to handle finite bifurcations: 
one uses for example expansions in the neighbourhood of the critical point, or linearly 
unstable modes as the starting point of the non-linear exploration. 

The study of the non-linear stability of plane Couette flow remained therefore confined 
to the numerical domain. Such a study was pioneered in 1980 by Orszag and Kells using 
a pseudo-spectral numerical code. Their linear exploration was inspired of the method 
described above, the finite amplitude perturbation being constructed from the least stable 
linear mode. The main results of their exploration are connected with the onset of the 
instability: the finite amplitude instability was shown to be confined to three-dimensional 
regimes and to Reynolds numbers larger than about 2000. Moreover, the developing of 

1The linear critical Reynolds number being infinite. 
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the instability was found to coexist with the appearance of inflection points in the mean 
profile, which suggests a causal relation between the two phenomena. This would not 
be too surprising, since those inflection points would create a local maximum of vorticity 
and the resultant flow would then satisfy the Rayleigh-Fjcrtcft necessary condition for 
instability. 

A major break-through was made recently by Nagata (1990) who displayed the first 
theoretical evidence of the existence of three-dimensional finite amplitude solutions in 
plane Couette flow. These solutions are obtained numerically by extending the bifurcation 
problem of a circular Couette system between co-rotating cylinders with a narrow gap to 
the case with zero average rotation case. The critical Reynolds number for appearance of 
those finite amplitude solutions is found to be of the order of 1000. A striking feature of 
the solutions is that they tend to create an inflection point in the mean flow, confirming 
thereby the results obtained by Orszag and Kells. 

While much progress has been made regarding the proof of the finite amplitude nature 
of instability in plane Couette flow, very little is still known about the characteristics of 
such instability. This is a major source of unhapppiness for both astro and geophysicists, 
who would like to know more about the thresholds for instability and the main feature 
of the possibly resulting turbulence, in order to better understand and parametrise the 
objects they are dealing with. This is the main motivation of the work which is described 
in this report. 

The starting point of our approach is the investigation of the importance of the inflec- 
tion points appearing in the mean profile and which have been observed by Orszag and 
Kells and Nagata. As already said, such inflection points are a major source of instability 
via the local maximum of vorticity they generate. They are therefore likely to play an 
important role, both on the onset and on the developing of the instability into a self- 
sustained equilibrium ("turbulent") state. The study of the influence of inflection points 
in a Couette flow was originated by Lerner and Knobloch (1988), who restricted their 
investigation to the inviscid case. However, it is clear that viscosity has an important 
stabilising effect by smoothing the inflection points. Our work was therefore to extend 
Lerner and Knobloch's work by including viscous dissipation. A more detailed account of 
the results presented here can be found in Dubrulle and Zahn (1991) and Dubrulle (1990). 

2 Analyt ica l  results  

2 .1  T h e  m o d e l  

By the Rayleigh-Fj~rt~ft theorem, any inflection point will give rise to an instability on a 
certain time scale ~'z. Under the assumption-to be checked afterwards- that the evolution 
of the inflection point occurs on time scales long compared with ~'I, the instability can be 
studied via a plain linear stability analysis performed on the total flow (Couette plus the 
inflection point). To enable analytical computation, the total profile was chosen piece- 
wise linear (cf. figure 1.). 6 is the non-dimensional amplitude of the inflection point 
(defect), while d is the width of the defect, s is taken to be small (less than unity) but 
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Figure 1: The profile used for analytical computation 

not infinitesimally small (finite amplitude perturbation). The computations can therefore 
be performed using ¢ as the expansion parameter. To avoid any effect of the boundary 
on the instability, the flow is assumed to be unbounded in the y-direction, but can be 
bounded in the x-direction. 

2 . 2  R e s u l t s  

The instability generated by the defect was found to be confined to small wavenumber: 
k < ~. Moreover, the growthrate was found to be very little sensitive to the Reynolds 
number, keeping a value of the order of 6/2. When the flow is bounded in the x-direction, 
two necessary conditions for instability arise: first, the magnitude of the defect has to 
be larger than RL 1/3, RL being the Reynolds number of the mean flow based on the 
downstream scale L. Second, for a given ¢ satisfying this condition, the profile defect 
which leads to instability must have a relative width in the interval: 

d 

2 . 3  D i s c u s s i o n  

One may wonder whether the results obtained with a physically insane (discontinuous) 
profile can be trusted. To counter such a perfidious questioning, we solved numerically the 
Orr-Sommerfeld equation using a smooth, continuous version of our discontinuous profile. 
For computational convenience, the plane Couette flow was considered to be bounded as 
well in the y-direction, which differs noticeably from the case studied in 2.1. However, 
for defect with small relative width d/L, the boundary effects can be thought to be 
negligible. In table 1., we display a comparison between the critical wavenumber computed 
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~R 

11.53 
2.8 
1.5 
0.85 
0.45 
0.3 

0.92 
0.85 
0.76 
0.70 

0.92 
0.85 
0.76 
0.70 

0.94 
0.82 
0.75 
0.69 

0.52 0.52 0.61 
0.4 0.4 0.55 

Table 1: Comparison between bounded and unbounded Couette flow 

numerically using both free-slip and rigid boundary conditions, and the theoretical one, 
derived analytically. As can be seen, the agreement is rather satisfying. 

The basis of our analytical study was the assumption that the defect evolves on time 
scales longer than the growth of the instability. This assumption can be checked noticing 
that a localised defect evolves with time as t -1/2 exp(-y2/4ut )  according to the one- 
dimensional Orr-Sommerfeld equation. Therefore, the amplitude of the defect varies as 
t -1/2 and its width as t 1/~. The viscous damping of the defect thus decreases with time 
as t -1, which is faster than the t -1/2 decline of the growth rate, which validates our 
assumption. 

The conditions derived in section 2.2 contains already a great whole of information 
about the existence of a self-sustained equilibrium state. We can now suspect that no 
turbulence can be expected from finite-amplitude solutions which do not satisfy the nec- 
essary conditions. To complete our analysis and try to obtain sufficient conditions, we 
have now to resort to numerical simulations. 

3 N u m e r i c a l  s i m u l a t i o n s  

The numerical simulation presented in this section were done using a pseudo-spectral code 
using Fourier series in the downstream (x-)direction and Tchebychev polynomia series in 
the crosstream (y-)direction. The basic profile was taken as a pure plane Couette flow. 
At the beginning of the simulations, we add to the basic flow a perturbation consisting 
of a finite amplitude defect and a white noise of infinitesimal amplitude. The defect is 
chosen so that it creates an inflection point in the mean profile. Its amplitude ¢ and its 
width d (see figure 1.), along with the Reynolds number based on the channel width are 
the free parameters of the problem. The total flow (Couette plus perturbation) is then 
let freely evolving, and the evolution is followed for periods varying between 50 and 100 
turn-over times. 

Two sets of boundary conditions (in the y-direction) were tried: rigid and free-slip. 
With the former, boundary layers are expected to form. This may induce high dissipation 
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Fig .  3 , :  F r e e - s l i p  b o u n d a r y  c o n d i t i o n s  

Evo lu t ion  o f  the  d e f e c t  ampl i tude  and total 
kinetic energy  at a Reynolds  number  5000 and 0.026 
for  initial defec t  ampl i tude 0.02. 
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at the wall and then influence the total dynamics which would not be concentrated in 
the neighbourhood of the defect, as implicitly assumed the previous section. With free- 
slip boundary conditions, however, one expects the boundary conditions to be of lesser 
influence on the dynamics of the instability. This case is therefore expected to fit better 
the unbounded Couette flow treated in the section 2, and therefore, more relevant for 
describing astrophysical situations. 

3 .1  T w o - d i m e n s i o n a l  s imula t ions  

3.1.1 Rigid b o u n d a r y  conditions 

A typical run, performed with a Reynolds number of 5 x 103 and a defect amplitude of 
= 0.02, is shown in figure 2. During the early stages of the instability, the energy starts 

increasing, at the expense of the defect whose amplitude decreases with time. Then, 
the energy experiences a strong decrease, followed by many "plateau", until the defect 
has given away all its "energy" and disappears. We were not able to find any regime in 
which the non-linear development of the instability would produce any back-reaction on 
the mean flow and therefore, "sustain the defect" against viscous dissipation. This seems 
to rule out the possibility of getting any self-sustained equilibrium state with this set of 
boundary conditions. 

3.1.2 Free-slip b o u n d a r y  condit ions 

This case appears to be rather different from the previous case, as expected. We were 
indeed able to find regimes in which the amplitude of the defect would be increasing and 
then sustained for period as long as 100 turn-over times. One example is given in figure 
3. using the same parameters as in figure 2. After a sufficiently long time, however, the 
defect is decreasing again and the flow goes back to the original plane Couette flow. 

Those two simulations confirm the previous findings of Orszag and Kells, according 
to which no turbulence can be expected in incompressible two-dimensional plane Couette 
flow. The situation is reminiscent for example of the MHD case, where anti-dynamos the- 
orems exists in two dimensions, although regimes which temporarily increasing magnetic 
energy (due to magnetic flux ejection) can be found. In our case, the equivalent of such 
anti-dynamo theorem is not yet available. Due to the analogy between magnetic field and 
vorticity evolution equation, it can however be suspected that such a theorem should be 
centered on vorticity properties. Indeed, in two-dimensional shear flows, vorticity is ad- 
vected like a passive scalar and does not experience the stretching that might be essential 
in the transition to turbulence. 

3.1.3 Inf luence of compressibi l i ty  

We then investigated whether compressibility could help sustaining the instability in two- 
dimensions. Indeed, in compressible flows, sharpening of edges through shock formation 
is possible and could therefore help holding the defect against viscous damping. However, 
we limited ourselves to rather low Mach numbers, for it is known from the work of Glatzel 
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3 D  N u m e r i c a l  S i m u l a t i o n s  

Fig. 4.: Ea r l y  evolution 

Evolution of the amplitude of the mode m=5 
and the x-component of the perturbed velocity 
at the early stage of the computation (8 
turnover times). Rigid boundary conditions 
are used. The Reynolds number is 2000. The 
beginning of the exponential growth of the 
mode coincides with a symmetry breaking 
occuring in the profile. 

0.014 

0.009 

0.005 

0.000 

-0.004 

-0.009 

-0.013 

-0.018 
-1.0 

i I i I i I i I i 

-0.6 -0.2 0.2 0.6 
7, 

1.0 

Fig.  5.: 

Evolution of the amplitude of the mode m=5 
after 53 turnover times. 

1.20 10 .2 

9.25 10 "3 

6.50 10 .3 

3.75 10 .3 

1.00 10 .3 
53 

, ~ t I i t I I I I ' l , , , 

55 57 60 
T~ne 

62 

1.4 10- 4 

1.2 10 -4 

1.010 4 

8.0 10 5 

6.0 10 .5 

4.0 10- 5 

2.0 10 "~ 

0.0 10 ° 

/ 

/ 
/ 

/ 
/ 

1 , 1  T i l l  i l l l l l l t l l l l l ~ l , ' l l t l l l l  

1 2 3 4 5 6 7 8 
Trae 

0 

-1 

-2 

-3 

4 

-5 

-6 

-7 

-8 

k = l  k = 5  

F I I I I I I I 
0 1 2 3 5 6 7 8 

k 

Fig. 6.: 

Energy spectrum after 53 turnover times. 



259 

(1989) that at large Mach numbers, the plane Couette flow becomes linearly unstable. 
Mach numbers up to 0.4 were then tried but the results obtained differed very little 
with the incompressible case. This is not too surprising, since shock formation is rather 
limited in such cases. In realistic objects, where the boundaries are sufficiently remote so 
that they do not influence local instabilities, it may well be that compressibility effects 
are important, triggering supersonic instability via resonance at large scale (cf Glatzel) 
and local instabilities at smaller scales. Explicit verification of such a conjecture by 
numerical or experimental simulations are however clearly beyond the limits of our current 
technology and might stay so for ever. 

3.2 Preliminary three-dimensional simulation 

We started to investigate the situation in three dimensions. A preliminary incompressible 
simulation, using rigid boundary conditions, performed at a Reynolds number of 2000 
seems to bring more hope into the possibility of turbulence. The evolution of the pertur- 
bation was found to be divided in two periods. During the first stages of the evolution 
(about 3 turnover times, see fig 4.), the perturbation follows closely the two-dimensional 
scenario (decay of the amplitude of the defect and of the energy, increase of the other 
modes). Then, a spontaneous symmetry-breaking occurs (reflectional symmetry with re- 
spect to the midplane y = 0), immediately followed by an increase of the total kinetic 
energy and an exponentiM increase of all the modes. This effect seems to be related with 
the dominance of the mode k = 3 which, in two dimensional simulation, was never exceed- 
ing the others. The instability was then followed for about 50 turnover times, before the 
lack of resolution would prevent further integration. The flow has already evolved into a 
state of strong non-linearity, the amplitude of the modes reaching 1/100 of the maximum 
velocity (fig 5.). The energy spectrum (fig 6) exhibits clear peaks on two different modes, 
k = 1 and k = 5. The former, being the largest available scale, could be linked with an 
inverse cascade of energy often observed in shear flows (e.g. in Kolmogorov flow, see She 
1987). The second one, associated with a scale corresponding to 1/5 of the width of the 
channel, is of great interest if one bears in mind the possible astro or geophysical appli- 
cations of our work. It would then represent the typical scale associated with turbulent 
transport of momentum. Such a result is not at odd with previous investigations on that 
subject. In experiments performed in a rotating tank, using an incompressible fluid and 
in the limit of zero rotation rate (which corresponds to the plane Couette flow), Wendt 
(1933) measured viscous torques corresponding to a typical scale of 1/100 of the gap be- 
tween the two-cylinders. More recently, Brandenburg et al (1990) computed numerically 
the turbulent viscosity in a convective plane Couette flow in a channel. The characteristic 
scale associated was here found to be of the order of 1/5 of the channel width, which is 
surprisingly close to our result. 
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4 C o n c l u s i o n  

The results presented here are clearly to be developed in the future. The way how turbu- 
lence sets up and organise itself to lead to the characteristics scales quoted above is still 
a deep mystery and would need further experimental and numerical support. It might be 
also worthwhile to look for an equivalent of the anti-dynamo theorem to understand the 
peculiarities of the two-dimensional case. This might help understanding the importance 
of breaking of the parity invariance in the transition to turbulence, by analogy with the 
MHD situation where this condition is known to be necessary for the alpha-effect. The 
exciting possibilities of applications of this kinds of studies (e.g. for accretion discs in as- 
trophysics, or the atmosphere in meteorology) should provide the necessary motivations 
to resume intensive studies on the plane Couette flow, which was for sometime treated as 
a rather interesting but very academic case. 
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A b s t r a c t  

Formal solutions to a class of initial-value fluid problems are converted to explicit solutions given in terms 

of "continued functions". Simplifications analogous to eikonal approximations of particle scattering theory 

are suggested, and an exact but implicit solution is constructed for a special situation of two-dimensional 

Euler flow. 

1. I n t r o d u c t i o n  

These remarks are an outgrowth of the "Infrared (IR) Method" devised for approximating large-scale 

solutions to ODEs, together with the "rescaling group" method of reinserting previously suppressed, high- 

frequency components into the output of the IR method 1. When generalized to the PDEs of the Euler 

or Navier-Stokes equations, it turns out that "rescaling" in time, t, depends on the position, r, and one 

requires an appropriate formalism to describe that non-trivial complexity. 

This presentation consists of such a formalism (Section II) defined in terms of ordered exponentials, 

and its more explicit representation in terms of "continued-function" solutions. Eikonal approximations to 

the latter may be constructed (Section III) in analogy with those used for particle scattering amplitudes 

of quantum field theory, 2 while exact solutions corresponding to a subclass of continued functions can be 

exhibited (Section IV). 

For simplicity, we restrict attention to two-dimensional flow, with velocity v in the (z, y) or (r, 0) 

plane, and with vorticlty w = V × v in the z-directlon. The class of problems under consideration here 

are those defined by an initial condition, with v(r,  t = 0) = v(°)(r) and w(r,  t = 0) = w(°)(r) specified 

vector functions. That is, at t = 0 one inserts a given velocity distribution into a quiescent background, 

and watches it develop and change as time increases. An example of such behavior is the experimentally 

observed s and theoretically understood 4,5 question of vortex-pair fusion. The formalism defined here may 

include viscosity, although the special example presented has assumed inviscid flow. 

"1" Supported in part by the U.S. Department of Energy Contract No. DE-AC02-76ER.03130, A022-Task A. 
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2. F o r m a l i s m  

Consider, first, the N-S equations for w(r ,  t) and v(r ,  t), where for simplicity, we restrict attention to 

two dimensions, 

Or/Or + (,,. V)," = - p  + vV~v (1) 

and 

aw/at + (v.  v ) w  = ~ v 2 w ,  (2) 

and for the moment neglect viscous effects, so that the RHS of (2) and the last lZHS term of (1) vanishes. 

Look for a solution of form wCr, t) : w(0) (RCr, t ) ) ,  where RCr, t) satisfies the same, homogeneous 

equation 

OltlOt + (v .  v ) I t  = 0 (3) 

with the initial condition 

R(~, t = 0) = ~. (4) 

A formal solution to (3) and (4)may be written in terms of an "ordered exponential" (OE), 

+ 

where ( )+ is ordered such that  terms with larger s values stand to the left. For example, 

o r  

I' / 0 ' i ' (  ) R_~ r -  a,  vCr, ,)  + a, l  d,2 v(r,  ,1)" V ~(~, ,2) + . . . .  

To construct an explicit solution, divide the range of ,-integration into small intervals, and expand 

sequentially. One finds a result equivalent to the iteration of 

i' I t ( r , ,  0 = ~" - d.., uO',  . I t . ) ,  (6) 

where J' 
u(r, ,It) = v(r - d,' u(r, ilt), ,). (7) 

If the velocity and its first time and spatial derivatives are bounded in magnitude, one can prove that 

(6) and (7) generate a solution to the Euler equation. Note that the solution of (7) may be given as a 

"continued function", 

f f u(r, .It) = v(r - d,l v(r  - &2 v ( r - . . . ,  ,1), , ) ) ,  (8) 
~ a  t i J I  t 

in which one can easily imagine multiple bifurcations and eventual chaos. 
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To be of practical use, one needs a method of upgrading the knowledge of the velocity v(r ,  t) which 

was used to calculate u or R.  For this, return to (1) and assume that  die v = 0, so that the density 

satisfies (3), and the specific pressure p may be calculated as 

where the Green's function O(r - r ')  contains all specification of boundary conditions. If the pressure P 

may be considered as given by an equation of state, P ,,, p~, then p will also satisfy (3). One need therefore 

calculate (9) but once-  at t = 0, using the initial fields v(°)(r) - and one can then upgrade the po(r) so 

calculated, or its gradient: p(r,  t) = p0(R(r,  t)). 

The formal solution to (1) can be expressed as 

v(r ,  t ) =  v(° ) ( i t ( r ,  t ) ) -  ~otdt '  (e-$, :esv(r 's)  "v) + 0 p(r, t ' ) .  (10) 

For this one requires a slight generalization of R(r ,  t) to 

It(r, t, t l )  e f,' dsv(r s) V 
+ 

which can bc expressed in Jcrms of the same function u, and is given by: 

z; I t ( r ,  t, t~) = r - ds u ( r ,  s i t ) .  

In this way, v( r ,  t) may be calculated as 

vCr, t) = vC0) (ItCr, t)) - de Vp (R(r, t, e), t'). (12) 

Given u, or R,  (13) provides the relation v = v {R}, while for a given v,  (7) provides the necessary 

R = It {v}. One begins at t = 0 with the specification of the initial velocity, calculates R at a small 

time-step, and then uses that function to calculate v(r, t); and then the process is repeated at the next 

time-step, etc. In this way, one has a complete, if sequential, method of calculating v(r, t) in terms of an 

initial v(°) (r). If viscosity is to be included, that term can easily bc inserted on the RHS of (11), while in 

three dimensions, a vortex-stretching term can be inserted on the RHS of (2). 

3. Eikona l  A p p r o x i m a t i o n s  

The sequential steps described above can be defined in essentially two distinct ways, approximately 

and exactly, with the first category far simpler than the second. What  is involved here is the in-principle, 

infinite number of iterations needed in solving the continued function equations at a fixed t. If one "breaks 

the chain", and uses a finite number of iterations, the forms generated resemble those of the cikonal 

approximation long familiar in particle scattering theory. 2. 
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For example, the exact (7) might be approximated by 

~Cr, sit) -~ vCr, , ) ,  

or by 

f u(r, slO ~-"(r - e ; ' , (~ ,  ;), , ) .  

The implicit assumption here is that one need treat correctly only sufficiently small frequency components 

of the spatial Fourier transform of v(r,  t), frequencies k for which O(Ikltlvl) < 1. 

In quantum field theory, one has exact representations 6 for Green's functions in the presence of an 

external, or background field of form 

C°IAI~ f f  f 
, t  

• e" * ' ( " )  A .  , . .  . . . .  

There, the cikonal approximation replaces the last factor by 

[ f  ( )1 
where ~b(~ °) denotes an asymptotic four.velocity of an incident or scattered particle. Such an approximation 

neglects variations of $#(sl) and is only viable in the limit of soft quanta exchanged• 

In the present context, one would expect that such an eikonal approximation would be useful when not 

much change in the spatial form of v is expected, e.g., during time intervals well before or well after a vortex- 

fusion process takes place, It would be very interesting to use a computer to perform such iterations, and 

to see explicitly what sort of convergence properties are displayed as the number of iterations are increased. 

4. Exact  I t e r a t i ons  

For sufficiently simple flows, it is possible to construct implicit solutions to the equations correspon~ng 

to an infinite number of iterations, although the passage from implicit to expllcit solutions is not clear. 

In contrast to the approximations described above, one would expect such exact results to be important 

when the flow changes substantially in a short time interval. 

The simplest illustration is in the small-t limit, where the infinite number of iterations of (7) are given 

in terms of an initial velocity v(°) (r, 0) = 0 3(r),  where/3 is a specified function of the radial coordinate. 

Let the solution to (7) for u(r,  sit) ---, u(r,  t - s) be expressed in the form u -- i" a(rlr ) + 0 b(rlr), where 

r = t - s. The argument of v(°) on the RHS of (7) may be written as p -- ~ (r - A) + 0 B, where A and B 

are the C-integrals (between 0 and r)  of a and b, respectively. A straightforward analysis shows that an 

impliclt solution for B(r l r  ) may be obtained in the form 
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f B  dB ~ r2~  2Bl~ (13) 

in the sense that thc result of the integration of (14) must be inverted to give B(r[r). If this can be done, 

then r - A = [B ~ +r2] 1/2, and p is known. Finally, u(r]r) = v(°)(p) = 8(r - A) fl(p)/p - ~ Bfl(p)/p, 

and this small part of the problem has been solved exactly. Similar but even more implicit remarks may 

be made when the initial v(°) distribution has both radial and angular components, depending on both 

variables. 

5. Summary  

The above remarks have presented a method of approach to Euler and Navier-Stokes flows which may 

be of some usefulness in obtaining a physical understanding of at least the qualitative aspects of problems 

which can otherwise only be handled by extensive numerical calculationa The methods described are new 

to the author, although that certainly does not guarantee that they have never before appeared in the 

voluminous literature on these subjects. 

A variety of other problems can be investigated using this formalism, including those of random forcing, 

and studies of possible "local coherence" in turbulent flows. Whether or not the results are worth the effort 

remains to be seen; but, at the very least, it is of non-trivial interest to explore in this subject those low- 

frequency, "eikonal" approximations familiar in particle scattering theory. 

The author is indebted to J-D Fournier and B. Legras for several most useful and informative discus- 

sions. 
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A b s t r a c t  • We investigate the standard acoustical problem of sound decay in a room, 
due to a small absorption at the walls, both in the geometrical approximation (1) and 
for the full wave problem (2). The classical universal Sabine's law of reverberation is 
shown to rely on ergodic properties of both geometrical billiard-like trajectories (1) and 
eigenmodes (2). A paradigm of an ergodic auditorium is used to test numerically these 
ideas: a two-dimensional (2-D) room with the shape of a Stadium. In both approaches, 
Sabine's law for the characteristic reverberation time is verified with good accuracy. 

I N T R O D U C T I O N  

Almost a century ago, Sabine [1] studied experimentally the decay of sound in 
concert halls due to absorption. In order to account for his observations, Sabine made 
the assumption that the pressure field in the room is uniform and isotropic. He then 
arrived at the famous formula for the decay time 

V 
T = c o n s t ~  (1) 

P, aiSj 

in which V is the volume of the room and the summation is over different types of 
absorbing materials with an absorption coefficient oLj and an area of exposed surface 
Sj. The constant factor is universal (const = 4/c with c being the sound velocity) and 
does not depend on details of the room. In the acoustics literature, the reverberation 
time TR is defined as the time necessary for a 60-dB decrease of the acoustic pressure 
and is thus simply related to the decay time T through Tn = (61n 10)T _~ 13.8T. In 
the literature, it has been mainly argued that uniformity and isotropy may be validated 
by assuming sufficiently irregular walls or diffuse surfaces so as to ensure an efficient 
isotropic scattering of sound [2-9]. Nevertheless, in th e high frequency limit one should 
consider that all the characteristic lengths of the room become larger than the wave- 
length. In this regime where the diffuse sound hypothesis does not apply, is the Sabine's 
law still relevant? Following the general discussion given by Joyce [8] on Sabine's law 
in the geometric acoustics limit, we presented in [10] a test for its validity, focusing 
on a pure ray approach in the case of a 2-D room with the shape of a stadium. The 
problem of sound decay in a room then becomes equivalent to an escape problem for 
particles bouncing off the enclosure of a billiard and being captured by a trap in the 
wall, This is a very general problem [11] which has been considered in other contexts 
such as transient chaos for connecting the (internal) dynamical properties of chaotic 
billiards to the (external) problem of chaotic scattering. 
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In what follows, we shall briefly summarize our results concerning the decay law for 
particles and the associated reverberation time for sound in a chaotic billiard with mirror 
reflection on the boundaries as a function of billard surface and effective absorption 
length. We shall then resort to the validation of Sabine's law in the limit of small 
absorption through a perturbative wave approach relying on the ergodic hypothesis 
introduced by Berry [12] and Voros [13]. This hypothesis concerns the correspondance 
between characteristic modes and classical phase space in nonintegrable ray systems. 
Restrictions will rise about this derivation due to the existence of localized enhancements 
of the field coined "scars" by E.J. Heller [14] and further described by E.B. Bogomolny 
[15]. We shall finally present numerical results on the morphology of modes in the 
Stadium billiard which clearly exemplify the role of "scars" in the decay of sound in an 
ergodic auditorium. 

I. S A B I N E ' S  L A W  W I T H I N  G E O M E T R I C  A C O U S T I C S  

Consider the following problem. Within the enclosure Of a Stadium billiard (made 
of two half-circles of unit radius connected by two parallel segments of length e), launch, 
from a given source point, a large amount of pointlike particles in all directions. Now 
define a disk D of radius r taken as a perfect absorber i.e. such that when the trajectory 
of a particle hits it, this particle is lost. Each particle is reflected following Snell's law on 
the boundary of the Stadium. Due to the ergodic property of the billiard each particle 
will almost surely hit the disk D after a length L. In previous papers [10, 16], we 
studied the probability P(L) for a particle of having "survived" after a finite length L. 
We numerically found (see Fig. 1) and also justified theoretically that P(L) is given by 

with 

P(L) = Po exp[-fl(e, r)L], (2) 

?- 

r) = + .  (3) 
2 

These results are founded on the Markovian character of the chaotic trajectories in the 
Stadium, which is met in the limit of small r or equivalently for long trajectories. The 
mean length of capture [fl(e, r)] -1 is proportional to the effective length of absorption, 
namely the perimeter 2~rr of the capturing disk. The quantity [~+e] is half the surface of 
the Stadium and approximately weighs (for a small enough capturing disk) the fraction 
of surviving particles. 

These results are nothing but Sabine's law for which, in the case of a 2-D room, 
the expression of the characteristic decay time may be rewritten as 

1 7rS 
T . . . .  (4) 

~c cl ' 

where S = ~ + 2e is the total area of the Stadium and l = 27rr is the effective absorption 
length. Note that the universal constant = 4/c in three dimensions (3-D) becomes ~r/c 
in 2-D. 

In fact, we have shown that, in the case of the Stadium (for e = 1 or 2), the 
decay law is more complicated than a pure exponential when the absorption perimeter 
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becomes larger than 0.3 due to the existence of finite time correlations which stem 
from the finite mean rate of exponential divergence between nearby trajectories, the 
so-called Kolmogorov entropy. Indeed, special trajectories will play a crucial role in the 
breakdown of Sabine's law, namely periodic orbits which appear to be of two kinds in 
the Stadium: (1) a continuous set of the so-called marginally stable "bouncing-ball" 
orbits which bounce perpendicular to the rectilinear portions of the boundary, (2) an 
infinite countable set of isolated unstable periodic orbits from which any neighboring 
trajectory diverges exponentially with a local rate given by the Lyapunov exponant of 
the periodic orbit. Among those periodic orbits, "bouncing-ball" ones will be responsible 
for substancial echoes between the flat parts of the Stadium whereas unstable ones 
will induce significant anisotropy of the flow of particles at least if their time rate 
of instability is longer than the characteristic reverberation time. Those effects are 
evidently particularly strong when all particles start at initial time from a single point 
source. On the contrary, for particles that have randomly sampled initial positions 
(corresponding to a diffuse acoustic source), we have numerically checked that the decay 
law departs from a pure exponential for an absorption perimeter only larger than 0.6. 
Obviously, this perimeter must remain small enough so as to ensure that the dynamics 
is truly Markovian such that Sabine's law still holds. 

N (log scale) 

5089 

I000 

I00 

i0 

\ 

\ 

L 
I 2 

(x 1000) 

Fig. 1. Semi-log representation of the number N(L) of orbits captured by the disk at 
length L for 10 4 initial orbits in the Stadium with end caps of unit radius and e = 1. 
The radius of the absorbing disk is r = 10 -2. N(L) is well fitted by an exponential 
N(L) = No exp( -~L)  with /3 "2_ 3.9 x 10 -3. Crosses are numerical results and the 
continuous line corresponds to fit by an exponential with a powerlaw correction (see 
ref.[16]). 
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II.  A W A V E  A P P R O A C H  : H O W  T O  T E S T  E R G O D I C I T Y  

Geometrical acoustics is the frame within which statistical room acoustics was 
developed [8]. Beyond this approximation, one might expect that the essential feature 
of waves, namely the phase leading to interferences, could lead to departures from the 
homogeneous statistical distribution of sound energy assumed to establish formula (1) 
and based on geometric chaos. 

In rooms with simple shapes such as parallelepipedic ones (where the wave problem 
is exactly integrable due to separability) with absorbing materials evenly distributed 
over walls, floor and ceiling, Schuster and Waetzmann [17] were the first to present 
general expressions for the time decay constants of eigenmodes. Using the concept 
of the absorption exponent a ~ defined as a ~ = - l n ( 1  - a) where a is the absorption 
coefficient, the decay constant 6 for a characteristic mode with complex frequency ca-  i6 
reads : 

C r t COS ~x ~ I COS~z 
=  L2  -ig- + - y  + j ,  (5) 

where L~, Ly and L~ are the side lengths of the parallelopiped, 0~ (resp. 0y and 0z) 
being the angle of incidence of the given mode on both walls perpendicular to the x axis 
(resp. y and z axes). 

For the example at hand, a reverberation process generally results from the decay 
of all eigenmodes in a given frequency band. But, since different modes correspond 
to different angles of incidence and thus to different 6's, one cannot obtain a pure 
exponential decay. Rather, the decay will start with a mean decay constant (6} = ~']i 6ili 
where the sum is over all modes of intensity Ii in the band and will eventually be 
determined by the decay constant of the least damped mode. In fact, a pure exponential 
Sabine-like decay as in Eq.(2) would necessitate quite a specific incidence dependence 
of the absorption exponent, namely 

a t  = ( 6 )  

This behavior may be approximately recovered if one assumes nongrazing incidence and 
a large enough specific acoustic impedance ~ defined as 

1 ( air pressure at wall 
( = ~-~ x \normal a--~r v--~i-~oc~'y ~ w a l l /  = I¢1 exp(icp), (7) 

where p is the density of air. Under those assumptions, the expression of the absorption 
coefficient as a function of ¢ and of the angle of incidence [18] 

1~ c ° s O - 1  2 
a(0) = 1 - cos # 7 1 (8) 

can be expanded in powers of 1 to yield the following expression of the absorption 

exponent to leading order 
4 cos w (9)  

= I¢1 c o s e  
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Thus, using the specific acoustic admittance/~ = ~-1 whose real part is denoted fiR, 
this allows to re-write equation (5) in a form closely related to Sabine's formula : 

C 

= V Z  'jsj (10) 
3 

where the sum is over the walls of rectangular areas Sj and V is the volume. This formula 
was first derived by van den Dungen [19] from energy balance arguments. Of course, if 
the wall is not hard (impedance not large enough) or if the wave is not oblique (near 
grazing incidence), the wall coefficient a' cos~ significantly differs from the so-called 
normal wall coe~cient aN = 4fir as shown in the extensive work of Morse and Bolt 
[20]. Note that formula (10) would yield Sabine's law if its validity were not restricted 
to particular types of eigenmodes. This particular case of a room with an "integrable" 
enclosure clearly exemplifies the fact that, in highly regular and symmetric rooms, 
noticeable differences in the decay rate of various modes occur due to the existence of 
so-called "axial" or "tangential" modes [20]. 

It has long been asserted [20] that sufficiently irregularly shaped rooms would 
average out those differeaces between decay rates which would all approach the one 
predicted by statistical geometrical acoustics. Here we wish to emphasize that, in a 
2-D room as regularly shaped as the Stadium, ergodic wave motion is obtained at high 
frequencies preluding to a validation of Sabine's law in a full wave treatment. 

In a first stage, consider the following unperturbed eigenvaiue problem in a room 
with an arbitrary shape, in which characteristic functions fn  satisfy a Neumann bound- 
ary condition (perfectly rigid walls): 

O 2 
tO n 

V2¢n + --fi-¢n = 0, ( l la )  

with 0nfn = 0 on the boundary. (llb) 

Now, with a small homogeneous specific acoustic admittance fl ("hard walls"), the 
perturbed characteristic functions fn  satisfy 

~ n  2 
v 2 ¢ .  + = 0, (12a) 

with Onfn = iW---flfn ~ i~(c  r q- iT)~bn on the boundary. (12b) 
C C 

A standard perturbation calculation [20] then yields (to first order) : 

rln--tO"--i~"~--~°" 2fff¢~dV (~+iT)¢~dS. (13) 

We next resort to the results of Schnirelman, Zelditch, and Colin de Verdi~re [21], and 
also Voros [13] (hereafter referred to as the "ergodic theorem") which roughly state that, 
if the geometrical limit is ergodic, then the eigenmodes are also ergodic (save possibly 
for a set of measure zero), in the sense that, on a coarse-grained scale (i.e. averaged over 
many wavelengths), the intensity is uniform and the spatial correlations are isotropic. 
Thus, for almost all modes in an ergodic room, averaging the absorption coefficient 



272 

on the walls amounts to averaging it over all directions of incidences. In terms of the 
specific acoustic admittance, the absorption coefficient given in Eq.(8) depends on angle 
of incidence 8 as 

4 7 cos 8 (14) 
= (cos e + 7) 2 + 

and approximately averages to (using a ( (  7 ((  1 since Re~ ((  1 (< Im( for "hard 
walls") 

87. (15) 

Note that this results is obtained in 3-D and that for a 2-D room, the corresponding 
formula is 

- 2 7. (16) 

From equations (13) and (15) one finally gets a decay constant which reads (in the 3-D 
case): 

c // 
'~" = 2 × 8 f f f ¢~dV ¢2dS" (17) 

This decay constant precisely yields Sabine's formula, since T = 1/(25), provided that 
the ratio of the squared characteristic function integrated over the walls to the squared 
function integrated over the total volume of the room be twice the ratio of the total 
surface of the walls to the total volume: 

f f ¢ dS S 
ratio -- f f f ¢~dV -- 2 ~ .  (18) 

Such a requirement is, following the "ergodic theorem" mentioned above, expected to 
be fulfilled in an ergodic room. Indeed, as Berry suggested [12], one may view a typical 
characteristic function, in an ergodic room, as a random superposition of plane waves, 
with different phases and directions, but with, locally, the same wavelength. Having 
this picture in mind, one can then argue that, in the limit of small absorption, for each 
plane wave incident on a wall with a given amplitude A, RA with R ~- 1 is reflected 

back therefore leading to the desired ratio ~ "~ 2. Here, we would like to stress 
that no mode-mixing processes as those proposed by Morse and Bolt [20] are involved 
to achieve ergodicity. The room is geometrically ergodic and diffusive reflection is not 
necessary. 

We checked how equation (18) is verified for the true modes in the Stadium. In this 
2-D room, the corresponding ratio must equal 2L/S in order to recover the statistical 
expression (4) of the decay time. We have numerically evaluated this ratio for high 
frequency odd-odd modes with Neumann boundary conditions (Eqs.(lla,b))(i.e. for 
rigid walls) in the case of a Stadium with end caps of unit radius and a rectilinear 
portion e equal to the radius. As a rule, eigenmodes may be roughly classified among 
three categories : a) the so-called "bouncing-ball" modes [22] localized between the fiat 
parts of the boundary, b) modes "scarred" by one or more unstable periodic [14] orbits 
or perhaps also homoclinic orbits [23] and c) apparently random modes. As can be 
seen in figure 2 (where the square of the eigenfunction is represented in only a quarter 
of the Stadium due to the odd-odd symmetry), of the three represented eigenmodes, 
the "bouncing-ball" mode at k = w/c = 80.259 (b) and the mode at k = 80.099 (a) 
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with a "whispering gallery" (due to a grazing orbit along the wall) exhibit the largest 
departures from the expected value of the ratio given in equation (18) whereas the mode 
at k = 80.278 (c) displays no remarkable feature and the value of the ratio is very close 
to 2L/S. O'Connor and Heller [22] have shown that the existence of "bouncing-ball" 
modes persists up to infinite frequency but this is, by no means, in contradiction with the 
above mentioned "ergodic theorem", for the proportion of those highly localized modes 
vanishes as the frequency tends to infinity. We have checked over the range k = 30 - 90 
that the overwhelming majority of modes have a ratio approximately ranging from 
1.7L/S to 2.3L/S, thereby qualifying numerically the "ergodic theorem". Note that 
the ratio defined in Eq.(18) provides a novel physical measure for the "ergodicity" of. 
modes. 

, a 

b 
C 

1 
Fig. 2. Three odd-odd eigenmodes for the Neumann problem (see Eqs. ( l la ,b))  in 
the Stadium with circular end caps of unit radius and with e = 1. The square of the 
eigenfunction is represented only in a quarter of the Stadium due to odd-odd symetry. 
For the three modes, the wave number defined by k --- w/c and the ratio defined in 
Eq.(18) are given: a) k = 80.099, ratio = 4.45; b) k = 80.259, ratio = 1.27; and c) 
k = 80.278, ratio = 2.17. 

C O N C L U S I O N  

We have checked that Sabine's law of reverberation is verified with good accuracy 
for almost all modes in a 2-D chaotic room with the shape of a Stadium in the high 
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frequency limit and for small enough absorption ("hard walls"). Besides the global 
problem of reverberation, wave acoustics in ergodic rooms offer a true richness of phe- 
nomena which can be tackled with the help of tools developed in "Quantum Chaos". 
Among those, one can cite the phenomenon of early recurrence in the transient response 
of an ergodic room related to periodic orbits in the associated ray problem and also the 
signature of those same orbits in the fluctuations of the spectral density. This wilt be 
pursued in a future publication. 
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One of the most important breakthroughs in Geology is the theory of Plate Tec- 
tonics according to which collisions between continents lead to deformations within the 
plates. Many important questions, notably in connection to the generation of earth- 
quakes, are related to the ways the interior of the plates accomodate and suffer from 
these collisions : does the deformation remain localized in the neighborhood of the 
plate boundaries and if not, why? What is the cause of the large deformations observed 
thousands of kilometers within the Asian plate, for instance? What is the relative role 
of large faults with respect to smaller ones in the accomodation of the deformation? 
Where does the heterogeneity of the fault patterns, observed within a plate at the earth 
surface, come from? How can one explain the observation of large undeformed regions 
imbedded within strongly deformed ones? These are some of the key questions con- 
nected to the physics of the deformations of the earth lithosphere. For the physicist, 
the creation of a wealth of complex geological structures, such as fractal fault patterns, 
self-similar or self-affine mountain ranges, etc, is very stimulating in relation to the 
modern trends of research aiming at understanding the general feature of pattern for- 
mations. This subject of the mechanics of plate tectonics is also fascinating because it 
is intermediate between the standard problem of the mechanics of deformation in solids 
(regime of small deformations) and fluid mechanics (which corresponds to a regime of 
infinitely large deformations). 

In this work, we propose a general unifying approach to these and related ques- 
tions. We suggest that the problem of plate deformations can be tackled with the 
general concept of fractal growth phenomena. This enables one to identify the dom- 
inant features of the problems, namely, screening, enhancement and non-local effects. 
In order to demonstrate the relation between the plate tectonics problem and growth 
processes, we have carried out laboratory experiments of a continental plate collision, 
which are scaled down for gravity. These experiments focus on the formation of faults 
in a laboratory model of the earth crust. A novel general quasi-two dimensional me- 
chanical model of crack pattern formation is introduced which exhibits both fractal and 
non-fractal rupture patterns, depending upon the nature of the applied strain and of the 
imposed boundary conditions. It consists into a brittle layer (dry sand) lying on top of 
a ductile layer (silicon putty) which are submitted to a simple shear or to more complex 
strain fields resulting from the indentation of a wedge penetrating steadily inside the 
system. This model is inspired from the structure of the earth crust and mantle and its 
kinematics is thought to represent a simplified version of plate tectonics. We argue that 
this system can be seen as a generalized version of a dual problem of dielectric break- 
down, similar to a dual diffusion limited aggregation problem, well-known to develop 
fractal growth structures. We have measured the fractal dimension and the multifractal 
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spectrum of generalized dimensions of the fault pattern. The fractal dimension is found 
close to 1.7 and independent of the rheologies of the samples. We also measured the 
distribution of fault lengths which is found to be a powerlaw, in agreement with the 
assumption that fault formation is akin to a self-similar process. 

Finally, we propose that the concept of self-organized criticality (SOC) is relevant 
for understanding the processes underlying the occurence of earthquakes and the me- 
chanics of plate tectonics. The SOC concept here implies that earthquakes organize 
the earth crust, both at the spatial and temporal levels. This idea allows to rationalize 
many observations on occurences and magnitude of earthquakes. Building on the SOC 
concept, we have attempted to clarify the basics mechanisms responsible for the organi- 
zation of the crust within a continental plate. An order parameter is introduced which 
is the local fluctuating strain tensor. The mechanical equilibrium of the continental 
plate showing faults over its whole surface and submitted to the boundary conditions 
imposed by the motion of the neighboring plates implies the existence of a global con- 
servation law acting on the stress and strain fields. SOC is intimately related to the 
existence of such a global constraint, which means that local fluctuations are relaxed 
via a generalized diffusion equation. This global conservation law can be shown to be 
related to the fact the earth crust is almost everywhere at the rupture threshold, in a 
way similar to the sand-pile at its critical slope. A method is proposed for computing 
the long-range space and time correlations in the strain fluctuations building up within 
the crust as a result of the SOC kinematics. We show how to comlJute from this theory 
the Gutenberg-Richter exponent of the distribution of earthquake magnitudes. Recent 
developments building of the SOC concept and on the mechanics of large deformations 
can be found in the references indicated below. 
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l. lntroduction 

The role of complex time singularities in determining the real 
time behavior of dynamical systems has become a topic of growing 
interest over the last decade. The nature and distribution of these 
singularities is relevant to the behavior of both integrable and 
nonintegrable systems. 

In the case of the former there is much interest in the idea of the 
"Painleve Property" as a test for integrability. Here, as is by now well 
known, there seems to be an intimate connection between the ability of a 
system to exhibit only poles - and possibly essential singularities - as 
movable (i.e. initial condition dependent) singularities and its 
integrability. However, the very notion of what one means by 
"integrability" is, with the exception of Hamiltonian systems, by no means 
clear or universally accepted - this issue will not concern us here. An 
introduction to some of the general principles of singularity analysis and 
associated ideas of integrability can be found in Clarkson and Kruskal(1), 
Kruskal et al. (2), Ramani et al. (3) and Tabor (4). At this point, however, it 
is useful to recall some of the standard terminology. In a local expansion 
about some arbitrary singularity position tO the power of (t - tO) at which 
an arbitrary coefficient appears is called a resonance and the conditions 
that have to be satisfied for the coefficient to indeed be arbitrary are the 
compatibility conditions. If the leading order is integer and all the 
resonances occur at integer powers and their associated compatibility 
conditions satisfied, the local expansion is a Laurent series, i.e. the 
solution has the Painlev~ Property, In the cases where compatibility 
conditions for integer resonances are not satisfied or the resonances occur 
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at noninteger powers of (t - tO) the solution has to be represented by a 
more complicated local expansion known as a psi-series, 

Our primary interest here is the singularity structure of 
nonintegrable systems - especially the nature of the distribution of the 
singularities and the way these distributions can influence the real time 
behavior. Apart from intrinsic mathematical interest these issues may 
have real physical consequences. For example, early work by Frisch and 
Morf (5), to understand aspects of intermittency in turbulence, 
investigated the singularity distributions of randomly forced systems and 
showed how the high frequency portion of the spectrum is determined by 
those distributions. In their study of the Lorenz system Tabor and Weiss 
(6) showed how intermittent bursts (in the dynamical systems sense) in 
the real time dynamics are correlated to the approach of singularities 
towards the real axis. At a superficial level it might be said that regular 
trajectories are characterized by more regular distributions of 
singularities above the real axis (an extreme and obvious example being 
the pole lattice of elliptic functions) whereas chaotic orbits seem to have 
an associated singularity distribution that is more random looking. An 
early illustration of this idea is given In Chang et. al. (7). 

Just as the association of "pure pole" behaviour (i.e. the Painleve 
property) with integrability is sti l l not fully understood (it seems to be a 
sufficient but not necessary condition) the type of singularity structure 
that might guarantee non-integrability, or be required for a given orbit to 
be chaotic, is also not clear-cut. In this context a number of ideas have 
been discussed; in particular the idea that nonintegrable systems might be 
characterized by some sort of natural boundary. This idea was first mooted 
in the work of Chang et. al. (8) in their study of the Henon-Heiles system. 
In the system parameter regimes studied the local expansions have 
complex resonances and this leads to a consideration (to be enlarged on in 
the next section) of the asymptotic (in the sense of t -->tO) form 

x(t) = ( 1/t) f(z) 

where z = riband p the complex resonance (t stands for t-tO). Mapping the 
singularities of f(z) back onto the t-ptane reveals a remarkable pattern of 
self-similar spirals of singularities - these theoretical predictions being 
well matched by numerical experiment. At f irst sight It might appear that 
the ever-tightening spirals lead to a natural boundary through which 
analytic continuation is impossible. However, as pointed out by Bessis and 
Chafee (9), great care must be exercised in reaching this conclusion since 
the spirals lie on different Riemann sheets and it may be that it is only 
their projection onto the plane that appears impenetrable. In addition, a 
fundamental and, as yet, unresolved question remains: since the singularity 
distributions in this case spiraling clusters, is a global property, what 
analytic structure feature (if any) distinguishes the regular orbits from 
the chaotic ones? This may well be associated with the radius of 
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convergence of the associated series - the pathologies of which make this 
a most difficult question. 

2. Psi-series for the Duffino oscil lator 

Here we reviev some of our results concerning the analysis of psi- 
series for the Duffing equation (Fournier et.al.(lO), henceforth referred to 
as I) and the Lorenz (Levine and Tabor (I I), henceforth referred to as If) 
system. We work with the former in the form 

+~-x = Z: F(t) (2.1) 

where F(t) represents some external driving force (the traditional linear 
term does not affect our analysis and is therefore dropped). In the case of 
~= ~= 0 the equation reduces to one that is easily integrated in terms of 
elliptic functions and indeed the local expansion takes the form of the 
simple Laurent series 

x(t) = 7- aj (t - tO) J-1 (2.2) 

in which a4 is the arbitrary coefficient (resonance). In the presence of 
damping and/or driving the arbitrariness of a4 is lost and can only be 
restored by resorting to the formal psi-series expansion of the form 

x(t) = ( l / t )  7.7. aJk t a (t~ln t) k (2.3) 

where t stands for (t-tO). It is on such series, about which so l i t t le seems 
to be known, that we concentrate our attention. 

At f i rs t  glance, in examining the properties of (2.3) in the complex 
plane deprived of the logarithmic cut, one cannot argue that any one set of 
terms, such as the higher power ones, can be neg]ected in favour of others 
in the t-->O limit. In this l imit  indeed 

Itl ~ It~ln tl ~<< It~ln tl k , V k, j > O, 

but for 0 < j < 4 (k-~ the opposite ordering 

It~ln tl ~ << I tl ~ tt~n tl ~" 

holds, if one however retains their multivaluation the logarithms 

In t = In r + i6+ 2 i  ~ k  (2.4) 

can still take on complex values with arbitrarily large modulus by going to 
sufficiently high sheets k. This suggests ways of ordering terms in the 
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series and, in particular by summing the double series in vertical strips 
we obtain the resummed series 

x(t) = (1/t)~. t"O.(z) (2.5) 

where the e.are certain functions of z = t~ln t. Formally these can be 
interpreted as the generating functions for the coefficient sets ajn and are 
round to satisfy certain linear differential equations (except for n = 0). 
The leading functlon eo plays a particularly significant role. Setting 
formally 

x(t) = (1 I t )  e~(z) (2.6) 

substituting into eqn (2. I) and taking the above ordering in the limit t--> 0 
gives the equation 

I I  I 

16 z~'~(z) + 4 z ~(z) + 20o(z) + ( 1/2) Oo(Z) = 0 (2.7) 

which on making the substitution eo = z~f(z~) transforms to 

f + ~-f = 0 (2.8) 

which is precisely the integrable part of the original equation. Thus we 
have locally mapped the nonintegrable equation onto an integrable one. In 
fact, what the rescaling at this order of t does is to map the problem onto 
that part of the equation which exhibits scaling invariance ( the dominant 
balance part, in fact) and which, in this case, is also exactly integrable. 
The exact solution to (2.8) reveals an elliptic function lattice of poles in 
the complex y = z~ plane. Under the inverse mapping z = t÷ln t each member 
of the lattice produces a multisheeted four arm pattern of singularities in 
the complex t-domain. In most cases excellent agreement is found between 
this theoretical prediction and numerical studies. However the results are 
not perfect and in fig 7 of reference~£certain arms of the lattice seem to 
be missing near the tea! axis. We have as yet not been able to explain this 
satisfactorily. 

Substitution of the entire series (2.5) into eqn. (2. 1 ) yields a whole 
hierarchy of coupled linear equations for the e,'s. In our first 
investigation of this hierarchy it appeared that the en's might all be 
sufficiently behaved to suggest that the resummed series may actually 
converge. Subsequent work has, however, revealed significant pathologies 
in these functions and it these results that we report below. 
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3. Patho!oaies in i:h? pi~i-serle~ 

In continuing our studies of the psi-series for the Duffing oscillator 
we have chosen to work with a slightly different form of the equation, 
namely 

" ,~< {- X + +~X + x 3 = O  (3,1) 

The introduction of the linear term px gives the important special case of 
= 2 ~z/9 for which (3,1 ) has the Painleve property. Indeed one may also 

show thai here a nontrivial (point) Lie symmetry may be found and the 
equation transformed into a form that can be integrated in terms of 
elliptic functions. For ~ ~ 2/~,z/9 , even with no driving, the Painlev~ 
property is lost and the local expansion becomes a logarithmic psi-series 
exactly_ like the one described in i and discussed above, The special choice 
p = 2~z/9 provides a useful l imit case in the analysis, For reference 
purposes we note that if we substitute the Laurent series 

X(t )= It-  P 
into (3. I) the f irst few coefficients are found to be 

ao= 2i¢" I£.~, (¢'=-+ I) (3.2a) 

a~ = -i)~¢'13 I~ (3,2b) 

a~ = i¢" ( li _~2/6 )/3 £~- (3,2c) 

6 (3,2d) 

O.a~=- i ~"~(~-)( p - ~-~) /£~ (3,2e) 

Thus one sees that a~ wil l  not be arbitrary unless ~ = 2~2"/9 (or~ = 0 
conservative integrable case), 

Working with the resummed psi-series (2.5) for the general case 
leads to a hierarchy of equations for the ~1~ of the general form (here ' 
denotes d/dz): 

.i." ' ^ + 3£^~ 
16 Z ~.k + 4 (2k + 1 ) z %k + (k- I )(k-2) ~ --~-% e~ 

11 I s, I l 

= - - e~ + ( k , 2 )  e k .  1 + 8 ~ . ]  [ 8Z 8k.~+ (2k-3) 8~+ ~)k-1 ] ~ [ 4 ~ -t 

- ~ e~.,. - ~,e~.,, , .ee,, ,e,.  (3.3) 

The system (3.3) is then subjected to the transformation 

%, (z) = ( z ~, )~-k y j  zk,) (3,4) 
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and then the rescalIng 

~(y) = 2ia" C X~(Cy) , (3.5) 

where C is a certain arbitrary constant. The net result Is the system 

X k-" 6X~X~=R~ , k~l (3.6) 

where ' denotes differentiation to the independent variable ~ = Cy and the 
R~ = Rk ( X~, ~. < k) are the inhomogeneous terms of general form 

,I" 4" +~-(2k-ll)~)~e.~+~(2k- "I' "i ,I X R~ = -zX~.4 ~-Xk4 - 15)~x~4-~(k-5)~ ~.~ 

i d + 
- IJ. (~') Xk. z + 2 £ ~ X,.~.. X t X~ (3.7) 

We wl l l  mainly be interested in just the f irst few equations, namely 

~o- o x~' --o /3.8a) 
I I  ~ ) l  I 

- 6 ×o x, = - ~ × o  (3,8b) 

" = y3_k~ J~ 
X~ - 6 X :  X~ 12£ XzX~Xo ÷ 2.. 4 O..,-"~X.I (3.8d) 

The homogeneous equation (3.8a) has the two independent solutions, 
I 

I 
X~= ds ( t )  and X~= ~ds(~) , 

where ds Is a standard elliptic function, which can be used to write the 
general inhomogeneous solution 

The original variable x(t) thus has the formal expansion 

o ,<( (3 .10)  

To maintain the ordering in powers of t-t we impose (see 3: for details) 

. I~-4 

llmoC~_~ ~X-(~ )i~.~.4__ 0 or finite limit. (3.1 I) 
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In analyzing .the functions X~ It ls Important to distinguish between the 
behaviour at ~ = 0 , which corresponds to the origina! singularity at t = t 6 
from the other singularities which may arise at some ~ = ~¢. It is these 
that introduce the pathologies into the psi-series. 

The behaviour around~ = 0 enables us to determine the arbitrary 
constant C introduced in (3.5). From (3.11 ) we set 

XK= X'-'~ ~ 4  (3.12) 

Direct substitution of this into the equations (3.8) and explicit use of the 
expansion of d~ (~) about ~= 0 gives the following 

= 

& 

which should be compared to the aj given in (3.2). At k = 4 we find 

from which C is determined to be 

C = ~f 8~'( 2A ~- 9~ )/27 
(3.13) 

In the case of X4(~) it is straight forward to perform local analysis 

about both~ = 0 and ~= ~C' About the former one finds a well behaved 

Taylor series of the form 

whith b o =-~/6C (=X'4), b4=b, =0,  b~arbitrary, b~=~/48C, etc. About 
one finds the Laurent expansion c 

X= ~oCn ( ~- ~c) ~'z 
with Coarbitrary, C~ = O, C~ = -~/6 C, C~ = C~ = O, C~ arbitrary. Note that 
since X~ satisfies a linear equation the pole position ~c is not arbitrary. 
Note also that X~ exhibits second order poles. In fact one can integrate the 
equation for X~explicitly using (3.9) to obtain 

I 

+ = d's 
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where 1~4 and ~ are arbitrary coefficients multiplying the homogeneous 
contributions to the general solution. Judicious choice of these 
coefficients lead to the result. 

(~) =-~[2ds÷~'ds] (3.14) X~ 

Explicit expansion of this exact solution about~ = 0 and [~= ~c confirms 
the coefficient b,, C n found by the local analysis. 

Our main interest is in the pole behaviour of the X~ . The pole order 
increases with increasing k. This can be seen by looking at the 
inhomogeneous term R k. The triple sum part of it (see (3.7)) will generate 
the most singular terms. For example using the fact that X o has first order 
poles and X,~second order poles we can see that 

R.= 6. X:Xo-~4 -~X o 

has a term (the triple product one) that can blow up as (~-~c) . For this 
to be balanced by the homogeneous part of the equation, i.e. 

II 
x,. - o x,. , 

we see that X~ must exhibit a (~- ~ behaviour. Using this type of 
argument we find the leading order behaviour for each XKto go as 

c3.1   xe' (% 
where r~=~ ~¢/6 C. Since we know that x(t) itself can only support f irst 
order poles this result looks rather alarming! However, these singularities 
can be resummed in the following sense. Consider summing up the most 
singular terms of each X k, i.e. 

S= ~X',., ~ rk/(~-~-r..) k ' t _  _ 
k:o ~ k=o I 

Thus the singularities (that is their leading orders) sum up to give back a 
first order, shifted, pole.Transforming all variables back to their 
dependency on t and the various Ok(z) we find at [~ = ~¢ 

xct)= 
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~- ~.~' 1 
(3.16) 

where t c is determined from the relation 

~'c= C ( t - t o ) [ l n [ t c - t  o] ]~ 

Of course the above results are only at leading order and in no way 
implies that other problems are not lurking in the expansion. Indeed these 
can be found in X~. Using the exact solution for X~ the inhomogeneous 
term R z can be shown to have the form 

Although we have not been able to explicitly integrate (3,9) using this form 
of R z we can now at least examlne the expansion of Xz, term by term, 
Thus, for example, In expanding about~ = 0 the previously found form of 
is easily confirmed, In expancling about ( =  ~.the intearands.._ in (3,9) are 
seen to have nonvanishing terms proportlona'l to (~-~--.k.) -t which thus 
integrate to give logarithmic terms, the f irst one in X z behaving as 

X-',., ( ~ -  ~r)S In ( ~ - ~'c ) . 

In fact we show that X itself has a (formal) psi-series of the form 

= ) [ ( - 

We can now start to see the pathological nature of the original psi-series 
for x(t): terms In that series generating logarithmic psi-series of their 
ownl 

4. Conclusion 

The present knowledge of the analytic structure of nonintegrable 
dynamical systems has two sources. One is the delicate numerical 
singularities search, whose interpretation requires much care. The other is 
the study of formal double" ~-series" and their partial resummations. We 
have shown that the actual understanding of the local and global 
phenomena exhibited by these systems is much more limited than usually 
thought. Specifically, assumptions often implicit ly made on the analytic 
behaviour of partial resummations have been fOUnd tOO much optimistic - 
this includes a recurence rule conjectured for the full resummation in a 
f irst exploration in L We believe that progress on a firm ground wi l l  
require a conclusive study of the interaction between local and global 
analyticity features of nonintegrable systems. 

We thank D. Bessis for discussions on this work. 
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BOUND SOLITONS IN THE NONLINEAR 

SCHRt3DINGER/GINZBURG-LANDAU EQUATION 

Boris A. Malomed 

P.P. Shirshov Institute for Oceanology, Moscow, 117259, USSR 

Interaction of slightly overlapping solitary pulses (SP's) is considered in the cubic 
nonlinear SchrOdinger equation with small pumping and dissipation terms, and in the 
quintic Ginzburg-Landau equation with small dispersion terms. In both cases, the small 
perturbing terms render the asymptotic wave form of a SP spatially oscillating. Using the 
description of the interaction of SP's in terms of an effective potential, it is 
demonstrated that this fact may give way to formation of two-pulse and multi-pulse 
bound states, which are weakly stable. 

The subject of this work is the perturbed nonlinear Schrrdinger (NS) equation 

with pumping and damping terms: 

iu t  + Uxx + 21 u I 2 u = iYoU + iy1Uxx - i y z  I u I z u ( 1 ) 

(Y 0, Y l, Y 2 > 0 ) , which has attracted attention as a dynamical model of plasma 

physics and hydrodynamics. 1-3 Recently, Eq.(1) has also found an application in the 

theory of optical solitons in fibers.4, 5 Eq.(1) describes a situation when the trivial 

solution u = 0 is unstable against small disturbances. In various physical problems, 

there occurs situation, then the trivial state is stable against small disturbances, but 

can be triggered into a nontrivial state by a finite disturbance. The simplest model 

describing this situation is based upon the quintic perturbed NS equation: 6 

i u t+  Uxx+ 21 u 12u =-iYoU + i y l u  +i~¢zlu I z - i Y ~ l u  14u (2)  

where the damping (¥ 0, Y i, Y 3 ) and pumping (y  z ) coefficients are all positive. 

One treats Eqs.(1) and (2) as perturbed NS equations if the dimensionless 

parameters ~/1, ~/2, and ~/o, ~¢a are small. In the opposite case, the same equations 

can be regarded as the Ginzburg-Landau (GL) equations, which also have 

applications in plasma physics 3 and in hydrodynamics,7, 8 and attract a great 

attention as general models for pattern formation and onset of chaos. 9 
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An important object governed by Eqs.(1) and (2) is a solitary pulse (SP). It is 

known 1 that Eq.(1) with V2 = 0 has an exact SP solution; if y~ # 0 but y ~ and ~/2 

are small, the SP can be found approximately as a solution close to the soliton of 

the unperturbed NS equation with a fixed amplitude: 

u = 2iq se th  ( 2 q ( x -  Zo)) exp (4 iq2 t  - ik I x - Z o  I + i e o ) ,  (3)  

qz=(3 /4)Yo(Y~+2Y2)-~  , k / q = ( 2 / 3 ) ( 2 y ~ + y z ) ,  (4)  

Zo and  ~o being arbitrary constants. The presence of the small wave number k 

produced by the perturbing terms implies that the asymptotic wave field of the 

soliton is oscillating in x, unlike that in the absence of perturbations. As for Eq.(2), 

in the near-NS regime (y~, Y2, YoY3 << 1 ) it has the soliton solution in the form 

(3) with k / q =  y ~ - y o / 4 q  2 , where 

r12 = (64y2)-~ (5(2yz _ y~ ) + ~/515(2y z _ y~)2 _ 96yoy3]) " (g) 

In the opposite (near-GL) regime, Eq.(2) has a stable solution in the form of a 

broad Sp.11,12 

The aim of this work is to demonstrate that, in both regimes, slightly 

overlapping SP's can form stable bound states (BS's). These can be two-pulse states, 

multi-pulse ones, and periodic arrays of SP's. This result may be important in 

applications. For instance, a casual formation of a two-soliton BS is detrimental for 

operation of fiber communication lines, therefore it is necessary to know how this 

can happen. 

Note that the soliton solution of Eq.(1), given be Eqs.(3) and (4), is unstable as, 

at I × I = co , it coincides with the trivial unstable solution u - 0 .  However, this 

circumstance is not so important, at least in application to the optical solitons in 

fibers.4, 5 Anyway, the soliton solution of Eq.(2) given by Eqs.(3) and (5) is stable, 

and the general results obtained below apply as well to these stable solitons. 

The interaction of the slightly overlapped solitons in the unoerturbed NS 

equation was analyzed by means of the perturbation theory in Ref.13. To obtain an 

effective potential of the soliton-solution interaction, it is sufficient to insert the 

linear superposition of the two unperturbed solitons into an exact expression for the 

energy of the system, and calculate a term produced by overlapping of each soliton 

with the "tail" of another one. It has been found 13 that the interaction potential in 

the unperturbed NS equation has no local minimum, so that it cannot give rise to a 

stable bound state of the two solitons. This inference accords with the well-known 

fact that the exact solution of the NS equation admits only unstable two-soliton and 

multi-soliton states with zero energy. 
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The circumstance that drastically alters the situation for the slightly perturbed 

equation is that the tail of the soliton (3) contains the oscillating factor 

exp(-ik I x -  Z o l) • Let us reproduce the calculation of the effective potential, 

taking account of this factor. We will consider the interaction of two solitons (3) 

with equal amplitudes lq. The solitons are separated by a large distance 

z -  Z(o 1) -ZOo 2) (zq >> 1 )and have a phase shift ¢ -  di)(ol)- dp(o2). The soliton-soliton 

interaction is accounted for by the term 

+ o a  

=_ [ l u ( x ) l  4dx Hint (6) 
- m  

in the full Hamiltonian of the unperturbed NS equation. Following Ref.13. one 

inserts the linear superposition of the two slightly overlapping solitons, u = u 1 + 

u2, into Eq.(6). It is easy to see that in the first approximation the effective 

potential U of the soliton-soliton interaction following from Eq.(6) after this 

substitution is the sum of two symmetric terms, 

+ ~  

u=-4f l u l ( x ) 1 2 R e ( u l ( x ) u ~ ( x ) ) d x  + ( 1 ~ 2 ) ,  (7)  
- m  

where Ul (x) is realized as the soliton wave form (3) with zo = 0, ¢o -- 0 ,  and n2 (x) 

is the tail of the second soliton which can be taken in the form 

u 2 ( x ) = 2 i  q exp ( 4 i r l 2 t - 2 q l x - z l - i k l x - z l + i q ~ ) .  (8)  

Note that, when inserting the tail of the first soliton into the second term of the 

potential (7), one must change signs in front of z and I, in Eq.(8). Subsequent 

straightforward calculations yield the expression 

U = -256113 e x p ( - 2 q z )  cos¢ .  c o s ( k z ) .  

which coincides with the unperturbed effective potential if K = 0. 

The potential (9) has two sets of the stationary points: 

(9) 

cos¢ =0 ,  cos(kz) = O; (io) 

s i n e = 0 ,  cos (kz)  + ( k / 2 r l ) s i n ( k z )  = 0 .  

The stationary states (10) are unstable (saddles) as their binding energy is 

exactly equal to zero, see Eq.(9). However, the states (11) are stable, provided 

(11)  
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c o s ~ .  c o s ( k z ) >  O. Thus the oscillating potential (9), unlike the unperturbed one 

with k = 0, gives rise to the set of stable two-soliton BS's with the distances 

between the solitons 

z ,  ~- ( 2 n  + 1 ) ~ / 2 1  k I, n = 0, l ,  2 . . . .  (12)  

Note that the underlying assumption ¥1, 'f 2, ~t o ~t 3 < < 1 implies I k I / r l  < < 1 

[see, e.g., Eq.(4)], so that the bound solitons are indeed slightly overlapped, as it 

was presumed: q z .  >> 1 By the same reason, the binding energy E of the BS is 

exponentially small: 

E, --- - U ( z  = zn) = 128 I k I q2 e x p [ - ( 2 n  + 1 ) ~ q / I  k I] ( 13 )  

Note that the potential energy was analyzed in the system which, strictly 

speaking, had no potential at all as it contained small dissipative terms. However, 

analysis of full equations of motion for the solitons' parameters, which is an exercise 

on the perturbation theory, leads to an effective equation of motion for a particle in 

the potential (9) in the presence of friction, so that the minima of the potential are 

stable indeed. 

Alongside the two-soliton BS's, there may as well exist multi-soliton ones, and 

also the BS's in the form of periodic or irregular arrays of solitons, with distances 

z n between neighboring solitons. The same mechanism implies a possibility of 

self-trapping of one soliton in a system with periodic boundary conditions due to the 

interaction with its own tail. 

Let us proceed to the GL regime. In this case it is convenient to rewrite Eq.(2) 

in the form of the GL equation proper: 

v t  = - ( 1 - e ) v +  (1 +i13)vxx+ (1 + i a )  [ v [2 v - ( 3 / 1 6 ) ( 1  + i5 )  [ v J4 v ,  ( 14 )  

where a and [3 are small dispersive parameters, the additional one 5 has been 

added for generality (it is implied a -  I~ ~ 5 ), and e is assumed small too. At 

a = 13 = 5 = e = 0 , Eq.(14) has the exact kink solution, 

Vo(X) = 2 e x p ( i ~ o )  [ 1 + e x p ( - 2 ~ ( X - Z o ) ) ]  -1/z,O = ± 1, (15 )  

where ~o a n d  Zo are arbitrary constants, cf. Eq.(3). As it has been demonstrated 

in Ref.12 (see also Ref . l l ) ,  when the perturbing parameters in Eq.(14) are different 

from zero the kink(~ = + 1 ) and antikink (a = - 1 ) can form a large-size SP, 

provided e -  a 2 . The frequency of the SP is ~ = 4 a - 35 , and the local wave 

number in a vicinity of each kink is 
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k ( x )  = o [ A  + B I V o ( X )  12], A ,, 2 a -  (13 + 3 5 ) / 2 ,  B = 3 ( 1 3 - 5 ) / 1 6 .  ( 1 6 )  

Thus the kink has the SP on one side of it, and on another side the wave field 

falls off exponentially, cf. Eg.(8) : 

v ( x )  = 2e×p(iqbo) e × p [ i c o t -  (1 + iA) I x - z  o I]. (17)  

Again, Eq.(17) tells us that the small perturbing terms render the tail of the SP 

oscillating. 

Let us now recollect that, in the case a = 13 = 5 = 0 , Eq.(14) can be presented 

in the gradient form, v t = -5  L/5 v , where the Lyapunov functional is 

÷ ~  

L = ] dx [ (1  - e )  lv 12+ I vx 1 2 - ( 1 / 2 )  Iv 14+(1 /16)  I v 16]. (18)  

Stable configurations correspond to minima of L. We will consider the 

interaction of two SP's with a relative phase ,t, , Which are separated by a large 

distance z > > 1. One can again insert the linear superposition of the two slightly 

overlapping SP's into Eq.(18). The lowest-order term that accounts for their 

interaction is [cf. Eq.(7)] 

U= 2 f [ ( 3 / 1 6 )  I v l ( x )  12- 1] I Vl(X) l= R e ( V l ( x ) v ; ( x ) ) d x  + ( ~  2) ,  (19)  

where v~(x) is the kink (15) with Z o = 0 , ¢ o = 0  times exp ( i o o t ) ,  and v2(x) is 

the tail (17) of the adjacent antikink (belonging to the other SP), with 

Zo = z, ¢o = ¢ .  The eventual result is [cf. Eq.(9)] 

U = - 3 2 e x p  ( - z )  cosd~ • c o s ( A z ) ,  (2o)  

where A is defined by Eq.(16). Evidently, the effective oseudoootential (20) has the 

set of stable equilibria with sin • = 0 ,  cos(Az) + A sin(Az) = 0 [cf. Eq.(ll)], i.e., 

with 

z , = ( 2 n +  1 ) ~ / 2 1 A  I, n = 0 , 1 , 2  .... 

[cf. Eq.(12)]. The "margin o f  stability" of the bound states, characterized by the 

value of the pseudopotential (20) at z = z n, is again exponentially small [cf. 

Eq.(13)]: 

(21)  
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E. .~ -U(z  = z . )  ~- 321A I e x p [ - ( 2 n  + 1 ) ~ / 2  I A 1]. (22)  

Like the solitons in the NS regime, in the GL regime the SP's may form 

multi-pulse BS's and periodic or irregular arrays alongside the pair SP's. 

To analyze the interaction of two SP's, it was assumed z > > 1, but z need not be 

large as compared to the proper size l(el) of the SP. (el)l is large too, but it is 

governed by another small parameter and it is uniquely determined, 12 unlike the 

distance z n which depends on the arbitrary integer n. 

The analytical treatment made it possible to reveal the BS's whose "margin of 

stability" was exponentially narrow, see Eqs.(13) and (22). The fundamental reason 

for this was that the dimensionless parameters 3/~, 3¢2, and 3¢o Y3 in the underlying 

Eqs.(1) and (2) had to be assumed either small or large. However, in the 

intermediate case Y1, Y2, Yo3¢3-1 (when the SP's can only be investigated 

numerically 15) the BS's, if any, could be more robust. 

In many cases, the generalized NS equation must include additional terms which 

account for higher dispersion. For instance, the nonlinear optical fibers usually 

operate in a spectral range near the zero of the second dispersion; in this case, the 

third dispersion must be taken into account, i.e., the term i ~ u xxx with real ~ must 

be added to the r.h.s, of Eq.(1) 16. The term gives rise to the additional oscillating 

factor e x p ( i q ( x -  z ) ) ,  q = 2 ~ I ]  2 , in the soliton's asymptotic (8). The crucial 

difference from the previous factor exp( ik  I x -  zl is that we have (x-z) instead of 

Ix-z]. After straightforward calculations, one can see that all the difference 

introduced by the new factor is the change of cosq5 in the potential (9) to 

cos(q~ ÷ qz) .  Eventually, this amounts to the fact that the value of ~I, in the 

stationary states is determined by the equation sin (4, ÷ qz)  = 0 instead of sin q~ = 0, 

see Eq.(ll).  The higher dispersion does not influence the stability and binding 

energies of the BS's; in particular, the BS's are absent if q ~ 0 but k = 0. The same 

pertains to the "skew" terms, like i t  u . . . .  added to the basic (this time - dissipative) 

part of the GL equation (14). 

In conclusion, let us briefly discuss feasible experimental manifestations of the 

effect revealed. A plausible object that could be interpreted as a soliton in a 

nonlinear system combining the dispersion and dissipation is the 

quasi-one-dimensional (strongly stretched) localized spot of convection in a layer of 

a liquid crystal heated from below, discovered in Ref.17. One might try to interpret 

a stationary pattern of the spots observed in Ref.17 as a multi-pulse BS. Another 

interesting object is the localized convection pulse observed in a binary liquid filling 

a narrow annular channel. 18. Interaction of two pulses in this system was recently 

studied in Ref.19. It was demonstrated that, when the two pulses are not far from 
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each other, they suffer a slow fusion into one pulse. It remains to understand if this 
interaction can be described within the framework of the approach developed in the 

present paper. 
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Abstract 

The renormalization group is applied to the Navier-Stokes equation for randomly forced media. Contrary to 
the previous works on the subject, the stochastic forcing is not assumed to be a white noise (the Galilean invari- 
ance can then be broken). The influence of deviations from the white noise on the renormalized hydrodynamic 
equations is estimated. 

1. Introduction 

When the renormalization group (RG) is used to describe fully developed turbu- 
lence, it is usual to introduce a stochastic noise in the Navier-Stokes equation. 1,2 The 
assumption of similarity between the experimentally observed turbulence and the tur- 
bulence generated by the hydrodynamic equations including a noise represents then a 
basic ingredient of the present application of RG. a,4 Even if it is not supported by any 
theoretical demonstration, this correspondance principle has been numerically tested 
with a certain success. 5 Many other arguments are put forward to justify this method. 
For example, the stochastic force is considered as the source of energy necessary to 
entertain turbulence. Moreover, the introduction of suitable stochastic forcings does 
not break the symmetries of turbulent flows. On the contrary, deterministic sources 
(pressure gradient, gravity field, ...) can break large scale properties such as isotropy 
and homogeneity. Nevertheless, the main justification to introduce such a stochastic 
noise is much more simple: at the present time, no way has been found to apply RG 
techniques to the deterministically forced Navier-Stokes equation. It is then very impor- 
tant  to evaluate the influence of the properties of the noise on the results obtained by 
the RG approach of fully developed turbulence. In this work we investigate the relation 
between the temporal behaviour of the noise correlations and the value of some typical 
constants of turbulence such as the Kolmogorov constant and the Prandt l  number. 

2. The RG technique 

Let us start  by a brief presentation of the RG approach of turbulence. As many 
papers have been devoted to this subject, 1-4 we only present the main steps of the 
method. In Fourier space, the Navier-Stokes equation reads: 

i;~ / d~ 
vt(f~) = G(f~) It(re) - -~  G(ft) Plmn(k) (27r)d+1 Vrn(f~ -- ~) Vn(gt) (1) 
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where 

P~j(f~) = ,sij - / ~ / ~ s / k  2 
= (~, ~) 

G = ( - i n  + ~ k2) -1  

The stirring force f is usually assumed to be Gaussian. The parameter A is in- 
troduced for further convenience and will be used as a perturbation parameter. Using 
the properties of the system such as isotropy, homogeneity and incompressibility, the 
correlations of f are nearly completely specified: 

^' 2D°(2~r)2d+'sd k-Y ( Iwl k(y-d-2)/a~ ] < fi(f¢)fj(k) ) -- (~(1¢ -4-1¢')Pij(l¢) (2) 

where Do is an undetermined constant and both y and a remain free parameters at 
this stage. The numerical constant (27r) 2d+1/Sd (Sd : the area of a d-dimensional unit 
sphere) is introduced to simplify further notations. The parameter a characterizes the 
temporal dependence of the noise correlations. It is usually assumed to be equal to zero. 
In this case f is &correlated in time and the stochastic force is a white noise. Our goal 
is to investigate the influence of deviations from white noise characterized by non-zero 
values of the parameter a. 

The main steps of the RG method are: 

First, the wavenumbers e-rA < k < A corresponding to the more fluctuating phe- 
nomena are eliminated from the equation. The cutoff A represents the larger wavenum- 
ber which has to be taken into account in the system. The parameter r characterizes the 
fraction of eliminated wavenumbers. Mathematically, this elimination procedure is per- 
formed by splitting the velocity field into two different components v(l~) = v > (1~)+v < (1~). 
Following the range of wavenumbers, we define: v>(f~) if e-rA < k < A and v<(l~) if 
k < e-~A. By introducing these new variables into the Navier-Stokes equation, we ob- 
tain two similar and coupled equations for v>(l~) and v<(l~). The goal of the procedure 
is to remove v>(l~) from the equation for v<(l~). This is done by using a perturbation 
scheme where ,k plays the role of the expansion parameter. As a matter of fact, the 
effective expansion parameter (usually noted ,~) is proportional to ,k and is given by: 

~ 2 =  ,~2 (Do  Ad-y-4) l-a/3 
u3 (3) 

Secondly, the lengths are rescaled so that the initial value of the cutoff is restored. 
This is done in order to allow the comparison between the equation obtained after 
the small scales elimination and the initial Navier-Stokes equation. Indeed, following 
the arguments of Ma, 6 different equations can only be compared if they describe the 
phenomena with the same degree of precision. In the present work, the degree of 
precision is clearly given by the cutoff. 

The rescaling of the cutoff leads in turn to the rescaling of all the variables: 

~o(e-~h) ~ e-~w(A) 

v(e -~A) --+ e'r%(A) (4) 
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At this stage, the rescaling dimensions for the frequency and the velocity (z and 7) 
remain undetermined parameters. The rescaling dimensions for the expansion param- 
eter, the viscosity and the forcing are determined in order to preserve the structure of 
the Navier-Stokes equation: 

A(e-~A) _- e(3-~) (zW(y-d-2)/3)r/2)~(A) 

u(e-~A) --* e (-z+2)~ u(A) (5) 

f(e-~A) ---, e(n-z)~f(A) 

Remarkably, up to the second order in the -A expansion, these operations (dim- 
ination/rescaling) do not change the structure of the equation in the limit of small 
wavenumbers. In this limit, the equation for v<(l~) becomes the renormalized Navier- 
Stokes equation with modified values for both the viscosity and the expansion parameter 
A: 

iA(A) Prin.(k) f d• Vm((¢ ~) vn((t) (6) (-ice + .(A)k 2) vl(l~) = fl(l~) -- - - - ~  (27r)d+-------- Y -- 

This complete procedure is iterated a large number of times in order to eliminate a 
large amount of wavenumbers. Considering infinitesimal variations of the cutoff at each 
step of this iteration leads to similarly infinitesimal variations of both u and A. We then 
obtain two differential equations relating the viscosity and the expansion parameter to 
the parameter r. 

d~ = ~((z - 2) + B ~  ~) + o(~ 4) 
dr 

d.~ ~(~-~(z-F y -d-2  2°LCl (°d)-2 ) 
d r  = 3 ) + ~-r-g-2g ~ + ° (~4)  

1 [+'dx Ixl~ - 1 - ol 
where c l ( a ) = T r  j_  ~ (1+x2)  2 2 s i n 0 r ( a + l ) / 2 )  , - 1 < a < 3  

d 2 - y -  4 -  ( d -  y + 2)a/3 
B~ = c,(a) d(d + 2) 

(7) 

(8) 

Since the first paper of Forster, Nelson and Stephen, it is known that the renormal- 
ization procedure leads to corrections to the force. These corrections are proportional to 
k2ce °. They are irrelevant in the large scale and long time limit if y > - 2  and c~ < 0. To 
avoid any renormalization of the forcing, we limit our investigation to negative values of 
the parameter a. Moreover, to ensure the convergence of some integrals which appear 
in the elimination procedure, we have to require a > -1.  Taking into account all these 
conditions, we restrict the parameter a to the values -1  < a < 0. In this case, the 
forcing amplitude Do is not modified by the small scales elimination. By assuming that 
Do is not altered by the rescaling either, one can relate the rescaling dimension 7 to the 
other parameters: 

3 - o~ d + y (y - d -  2)a 
~ = - - ~  z + - - -5 -  6 (9) 

We have already taken into account this relation in the equations (7) and (8). 
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The differential equations (7) and (8) give the variation of u and A as an expansion 
in X. The lowest order terms originate from the rescaling of the variable given by (5) 
and are not influenced by the X-expansion. The other terms are generated by the small 
scale elimination. It should be noted that,  up to order two in X, the elimination of large 
wavenumbers does not affect the value of A if the forcing is a white noise (a  = 0). This 
is a consequence of the Galilean invariance when ~ = 0 and can be easily verified in 
equation (8). 

From the definition (3) and the equations (7) and (8), we can deduce the asymptotic 
behaviour of the effective expansion parameter. It is easy to show that  for large r, 
~2 

,-~ e = y + 4 - d .  The A-expansion is then equivalent to an e-expansion.  Let 
us stress that  the value of e is completely independent of the colour of the noise a. 
Therefore, the use of colored noises does not affect the convergent or divergent nature 
of the ~-expans ion .  

3. The energy spectrum 

The Kolmogorov-Obukhov spectrum 7 constitutes a very characteristic property 
of the hydrodynamic turbulence. For this reason, it often plays a major role when 
comparing the theory and the experimental results. It is thus important  to evaluate 
the energy spectrum compatible with the renormalized Navier-Stokes equation. This 
spectrum is defined by: 

E(k) = l s k~_l f f  dw / d~ 2 d ~ (27r)d+---------- Y < Vi(fc)vi((t) > (10) 

To lowest order in A, one obtains: 

= Is I G(4)G(f¢) < f,(fc)fi(~l) > 2 d ~ (27r)d+1 

1--o~ 

where c 2 ( ° 0 = - 7  - _ ( l + x  2) 2 s i n ( T r ( a + 1 ) / 2 )  - 1 < o l < 1  

This result is compatible with the Kolmogorov-Obukhov spectrum (E(k) = CK 
-~2/3k-5/3 where CK is the Kolmogorov constant and ~ the dissipation rate of energy) if 
e = 4. The use of e = 4 as a small parameter is the major  difficulty of the RG approch of 
turbulence. Nevetheless, as we focus our at tent ion on the influence of colored noises on 
the RG results, we do not discuss the problem of the convergence of the e-expansion.  
Indeed, we noted at the end of the section 2 that  the parameter  a does not affect the 
convergence property of this expansion. 

At this stage, the Kolmogorov constant remains an undetermined parameter. In- 
deed, as long as the forcing amplitude (Do) is not related to the dissipation rate of 
energy, it is not possible to obtain a numerical value for CK. This problem has been 
solved by Dannevik, Yakhot and Orszag. s Following their work, it is possible to derive a 
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closed equation for the energy from the renormalized Navier-Stokes equation (6). This 
equation is exactly the same as the one deduced from the Eddy Damped Quasi Normal 
Markovian approximation (EDQNM): 9 

OE(k, t )  
Ot - T ( k , t )  - 2 u k 2 E ( k , t )  + O(A 3) (12) 

The term T(k, t) represents the variation of energy which originates neither from 
an external source nor from the viscous effects. This term can then be associated to the 
transfer of energy from the large scales to the small ones. That  is why it is named the 
transfer term. As the transfer effects are due to the non-linearity of the Navier-Stokes 
equation, it is not surprising that  T(k,  t) is also non-linear: 

T(k,  t) = C dq dp adpq 8kp q E(p, t) E(q, t) 
.,., p k<q<p+k \ / -~ 

d a pd-1 I E(q,t) E(k,t) (13) 

where Cd = 4Sd-1/Sd(d -- 1) 2 and # represents the angle between ff and 15 in the triad 
{1~, if, 15 = ff¢ - if}. The functions a and b are defined as follows: 

1 
adpq = 4]¢2 Piton(;) P,,i(15) Pnj(ff) Puj(ff¢) 

d 1 bkpq = P""(¢) P""(15) P.,i(q) 

and the time 8kpq is given by: 

Ok, q = ds e -~k2(t-~) U(p, t, s)U(q, t, s) 
U(p, t, t)U(q, t, t) (14) 

The function U(k, t, s) is related to the covariance of the veloeity field: 

U(k, t , t ' )  
< vi(k,t)  vj(q,t ' )  > =  d -  1 Pij(k) 6(~+ff)  (15) 

To lowest order in the ~-expansion, U(k, t, s) and consequently 8kpq can be directly 
deduced from the forcing correlations (2). In case of white noise forcing (a  = 0), the 
calculations can be analytically performed and lead to: 

1 
Okpq = Uk 2 -[- u P  s -4- •q2 (16) 

We then obtain the same result as in the EDQNM approximation. Unfortunatly, if 
a # 0, it is no longer possible to obtain the exact structure of Okpq. An approximation 
can however be deduced: 

1 
Okapq ~ uk 2 + (1 + a)/.'p 2 + (1 + a)//q 2 (17) 

In the Kolmogorov-Richardson cascade, the transfer rate of energy is equal to the 
dissipation rate of energy. This leads to the relation: 
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0 f0k ~=o fo k = - 0 - /  dk' E ( k ' )  = - dk' T (~ ' )  (ZS) 

By inserting (11), (17) and the asymptot ic  value of the renormalized viscosity into 
(18), we obtain a simple linear relation between the forcing ampli tude and the dissipation 
rate of energy: 

3 - 2a 

Do (19) 

dk dq @ where r l ( d ) =  Ca 
• " ~ ' p - k < q < p + k  Pq 

1 kd-1 p-5/3 q-5/3 
× a~q  k2/~ + (1 - a)p=/3 + (1 - a)q=/3 

1 pd-1 q-5/3 k--5/3) 
--bdkpq (1 - a)k2/3 + (1 - a)p2/3 + q2/3 

From this relation, the Kolmogorov constant is completely determined. Its value 
as a function of the parameter  a is plotted in the Fig.1. 

Ck 
2 

1,5 

0.5 

0 

I 

-6,s -6.6 -6.4 -6.2 6 

Figure 1: The Kolmogorov constant as a function of the parameter ce. The 
experimentally observed values of CK lie in the range 1.4 < CK < 1.7. 

4. The temperature equation 

The RG can also be applied to the evolution equation for a passive scalar like the 
temperature.  The complete procedure of small scales elimination and rescaling of the 
variable is similar to that  described in the section 2. In this case, a differential equation 
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relating the thermal conductivity to the parameter r is obtained (P  = ~'/~ represents 
the Prandt l  number): 

-~2 1 -- p l - a  
_ - 2)  + _ p 2  P + 4) ( 2 0 )  

dr 1 

where C~ = c2(a) d / ( d -  1) 

A differential equation for the Prandtl  number can be constructed from (7) and (20). 

dP -X2( P 2 ( 1 - p I - ~ )  ) 
db = P B~ - 1 p2 C~ (21) 

The renormalized value of P is then given by the fixed point of (21) and is repre- 
sented in Fig. 2. 

p* 
1 

0 .8  

0 .6  

0 .4  

0 .2  

0 I I I I I 

- 0 . 8  - 0 . 6  - 0 . 4  - 0 . 2  0 

Figure 2: Renormalized Prandtl number (P*) as a function of the parameter 
c~. The value of P* does not depend crucially of c~ and remains close to the 
experimental values of the turbulent Prandtl number ( 0.7 < Pt < 0.9). 

5. Conclusion 

We have shown in this work that  the RG can be applied to the Navier-Stokes 
equation describing media forced by colored noises. The influence of the deviations 
from the white noise (characterized by the parameter a) is very small. Even if the 
numerical values of the Kolmogorov constant and the Prandt l  number depend on o~, 
this dependence is weak (see Fig.1 and 2). Moreover, due to the scattering of the 
experimental measures, it is not possible to select a particular value of o~ which would 
give the best fit to the data. 

Other characteristic constants of fully developed turbulence (Batchelor constant, 
K - e viscosity axnplitude, or Smagorinsky constant) can also be obtained by the RG. 3 
They are also very weakly dependent on o~. 1° 

Finally, let us stress again the fact that  the colour of the noise does not affect 
the divergent or convergent nature of the e-expansion. Indeed, the asymptotic value of 
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the  effect ive e x p a n s i o n  p a r a m e t e r  is a lways  p r o p o r t i o n a l  to  •1/2 a n d  e is i n d e p e n d e n t  
of a .  Moreover ,  to  recover  t he  K o l m o g o r o v  s p e c t r u m  i t  is necessa ry  to  a s s u m e  e = 4 
i n d e p e n d e n t l y  of t he  va lue  of o~. 
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S t r u c t u r e  o f  h o m o g e n e o u s  t u r b u l e n c e  o b s e r v e d  
in a d i r ec t  n u m e r i c a l  s i m u l a t i o n  

M. Meneguzzi and A. Vincent 
CERFACS, 42 av. Gustave Coriolis, 31000 Toulouse, France 

A b s t r a c t  
Direct numerical resolution of the three-dimensional Navier-Stokes equation on a 240 s 

grid is u~ed to obtain a three-dimensional homogeneous turbulen~ flow at Reynolds numbers 
RL .~ 1000 and RA ..~ 150, based respectively on integral scale L and Taylor microseale 
A. An inertial subrange is present in the energy spectrum over more than one decade in 
wavenumbers. Visualization of the flow confirms that the vorticity is organized in very 
elongated thin tubes. These tubes seem to originate in shear instabilities or in merging of 
previously formed tubes. 

I.  I n t r o d u c t i o n  
Direct simulations of homogeneous turbulent flow at the highest presently reachable 

resolution are useful to gather some information on the statistical properties of such a 
flow and to explore its structure in space. Indeed, these "numerical experiments" allow 
measurement of many quantities unaccessible in the laboratory and visualization of the 
small scales structures of the flow. It becomes feasible, on computers of the last generation, 
to reach Reynolds numbers at which a genuine inertial subrange shows up in the energy 
spectrum (Kerr 1985, Yamamoto and Hosokawa 1988, She et at. 1988, 1990)• The main 
goal of the present calculation was to obtain a more extended inertial subrange than in 
previous work, and to concentrate on the inertiai domain properties. 

2. T h e  c a l c u l a t i o n  
We solve the Navier-Stokes equation for incompressible fluids in rotational form 

0v 
cO-'/= v x w - V(p + v2/2) + uV2v + f (i) 

with the continuity equation V- v =0. v is the velocity field, w = V x v the vorticity, 
p the pressure, u the kinematic viscosity and f a force field. Since we are interested in 
(statistically) homogeneous turbulent flows, we take periodic boundary conditions in all 
directions. In Fourier space the two equations can be combined to give 

cOvk _ P ( k ) - ( v  x w)k -- uk2vk + fk (2) 
Ot 

• Paper presented at the workshop on large-scale structures in nonlinear physics, 
Villefranche-sur-Mer, France, 14-18 Jan. 1991 
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where the tensor P is the projector on the space of solenoidal fields, defined as Pij(k)  = 
k+ kj. 6ij - ks A pseudospectral method is used to compute the right-hand side of this equation 

(see Gottlieb and Orszag 1977). The t ime marching is done using a second order finite- 
difference scheme. An Adams-Bashfort  scheme is used for the non linear term while the 
dissipative te rm is integrated exactly. The resulting numerical scheme is 

Vk n + l -  Vkne -vk2~t [3 W)knc_uk26t 1 X W)kn--le -2uk2$t 3. = P (k ) .  (v  × - ~ ( v  + fkne -vk2~' 

To start  (or restart)  the calculation, we use a second order Runge-Kut ta  scheme. 
We force the field at low wavenumbers in a deterministic way. All Fourier modes with 

k < 1.5 are forced with a constant amplitude f independent of k (the wavenumber k has 
integer components because the space period is 27r). This results in large fluctuations of 
the energy injection rate ei = <  f"  v >. One can only hope to reach a steady-state regime 
in the sense that  ei fluctuates in t ime around a constant value. 

The calculation presented here was done with 2403 Fourier components, and a viscosity 
of 10 -3.  One time-step takes 12 seconds on a Cray-2, using the 4 processors. Integration 
over one turnover t ime (defined below) takes of the order of 4 hours of Cray-2. 

To estimate the degree of isotropy of the flow, we use the same method as Curry et 
al. (1984). For each wavenumber k, we define two unit vectors e l ( k )  and e2(k) which 
form with k an orthogonal reference frame. Since k .  v = O, each Fourier mode v ( k )  is 
defined by its two components in this frame vl (k)  and v2(k). We define the isotropy I as 

I = r<l-tl2>] 1/2 In the calculations presented here, I fluctuates by a few percent around 
L < l ~ p > j  • 

0.95. Therefore, our flow is close to statistically isotropic. 
Let us recall the definition of some characteristic quantities used in the following. 

f¢¢ k-XE(k)dk 
Three characteristic lengths are used, the integral scale L = v°/.oo E(k)dk , the Taylor 

d O  

r ]+ microscale A = [ f o  k2E(k)dk] a n d  the Kolmogorov dissipation scale l = , where e 

is the mean energy dissipation rate per unit mass. The two characteristic time-scales of 
homogeneous turbulence are the eddy turnover t ime ~'0 = L/vo where vo is the root mean 
square velocity, and the dissipation t ime ~-v = L2/g.  With these quantities one can define 
two Reynolds numbers, the integral scale Reynolds number RL =- voL/l/  and the Taylor 
microscale Reynolds number R), = voA/Z/. 

3. T h e  spec tra  o f  the  f low 
After integration over several tens of turnover times we obtain a statistically stationary 

regime in the above sense. The energy spectrum, shown in figure 1, displays a power law 
range for k < 30, with an exponent a little larger than -5/3. The fact that  this is an 
inertial range is confirmed by inspection of the energy flux spectrum ¢(k)  = f~,o T(k)dk 
where T(k)  is the energy transfer at wavenumber k. This function is found constant for k 
in the inertial range, as expected. After reaching this s tat ionary regime, we integrate for 
30 more turnover times in order to accumulate some statistics. The energy spectrum does 
not vary significantly during this period. 
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By fitting the spectrum with the Kolmogorov form E(k) = CKe2/3k -5/3 we obtain a 
value of 2 for the Kolmogorov constant CK, which does not vary by more than 3% in the 
statistically steady-state period. This value of CK is a little larger than the experimental 
value 1.5 (see Monin and Yaglom 1975 for references). Our Reynolds numbers are RL 
1000 and Rx ~ 150. 

4. T h e  spat ia l  s t r u c t u r e  o f  t h e  f low 
Figure 2 shows a 3D picture of the vorticity field. The vorticity at each grid point is 

represented by a vector, here so small that individuM vectors can hardly be seen. Vectors 
are only plotted if their modulus is larger than a given threshold. By varying this threshold 
and rotating the figure on a graphic workstation screen we can explore the structure of 
the field in detail. One can see that the vorticity is organized in thin elongated tubes, as 
previously reported by Siggia (1981), Kerr (1985), She et ai. (1990). Figure 3 shows the 
effect of lowering the threshold, and therefore letting smaller amplitude vorticity vectors 
appear. The length of these tubes can reach the integral scale L (the cube size is 21r). 
Their thickness is of the order of a few dissipation scales, here a few grid points. This is 
confirmed by a more detailed analysis. The dissipation scale l, in our simulation, is of the 
order of the mesh size, while the Taylor microscale is approximately ten mesh sizes. The 
characteristic tube thickness is a few dissipation lengths. Figure 4 shows a detailed view 
of a vorticity tube. It displays a sub-cube one sixth the size of the complete one, with 40 
grid points on each side. Similar plots for the velocity field show mainly the forcing field 
if one uses a high threshold. But when the highest velocities axe eliminated, the tubes are 
clearly visible. 

From these visualizations, one is lead to the conclusion that the vorticity tubes, which 
seem to be the basic structure of three-dimensional homogeneous turbulence, involve all 
the scales of the flow. We have done the same kind of pictures of the vorticity field after 
removing all dissipation range scales. A smooth filter is applied in Fourier space in order 
to avoid spurious fluctuations. The large scales to which the forcing is applied were also 
removed. Figure 5 shows the same sub-cube as figure 4 when only inertial range scales are 
left. One can see the external regions of the tubes. Some helical structure is observed, as 
noted by She et al. (1990). 

We have examined the shape of many of these tubes in order to see wether they are 
in fact rolled-up vorticity sheets, as suggested by Lundgren (1982), but this does not seem 
to be the case. Figure 6 gives an example of the projection of the velocity field on a plane 
perpendicular to a vorticity tube, while figure 7 shows the curves of constant vorticity on 
such a plane. As one can see on these figures, there is little evidence of spiral structure, 
or any other two dimensional structure. 

In order to see how these tubes are produced, we have followed some of them back 
in time using a visualization sofware. What we find generally is that the largest vorticity 
tubes are the result of the merging of previous smaller tubes. We then follow the evolution 
of these smaller tubes back in time, we sometimes find two or even three tubes almost 
parallel, like in the example given in figure 8. Inspection of the associated velocity field 
shows that these tubes belong to one and the same shear zone (fig. 9). This strongly 
suggests that they have been produced by a shear instability. Unfortunately, this type of 
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instability is difficult to observe in a forced turbulence calculation, because small vorticity 
regions fall below the amplitude threshold used to visualize the vorticity field, dominated 
by more intense features. The shear instabilities producing the vorticity tubes are easier 
to study in a decay calculation, with purely large-scale initial conditions. Indeed, Brachet 
et al. (1983) have seen the formation of vorticity tubes by what seems to be a Kelvin- 
Helmholtz type of instability. We are presently analysing a 2563 decay calculaton with 
random initial conditions, in order to investigate this aspect of the dynamics. 

6. C o n c l u s i o n  
We have obtained a turbulent homogeneous flow at R~ ~ 150 and an inertial subrange 

more extended than in previous tridimensional simulations. 
In physical space, we confirm the observation by Siggia (1981) that the vorticity is 

organized in thin tubes. We find that the thickness of these tubes is a few dissipation 
scales while their length is comparable to the integral scale of the flow. Therefore, the 
picture of intermitteney that emerges in physical space from our simulations is that there 
exist phase relationships between all the scales present in the flow, due to these elongated 
structures. The study of the time history of these vorticity tubes reveals the frequent 
occurrence of vortex tube merging. Initial production of vorticity tubes seems to be due 
to shear instabilities. A more detailed study of these instabilities is under way. 
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F i g u r e  9: Velocity field associated with the vorticity tubes of 
figure 8, seen from a different position. Here, these tubes are ap- 
proximately perpendicular to the page. 



N E W  R E S U L T S  O N  T H E  F I N E  S C A L E  S T R U C T U R E  
OF FULLY D E V E L O P E D  T U R B U L E N C E  

M. VERGASSOLA 1 and U. FRISCH 1 
1 CNI~S, Observatoire de Nice, BP 139, 06003 Nice Cedex, France. 

A B S T R A C T  

The multifractal model of fully developed turbulence predicts the exis- 
tence of the intermediate dissipation range, where the singularity exponents 
of the multifractal spectrum manifest their existence because of the effect 
of viscosity [1]. The behaviour of the moments of the increments at a dis- 
tance £ of the velocity field as a function of £ is of multiscaling type: a 
local power law, where the exponent is a slowly varying (logarithmically) 
function. The main consequence is the prediction of a new (other than the 
one predicted by the 1941 Kolmogorov theory) form of universality of the 
energy spectrum E(k) with respect to the Reynolds number R: the function 
log E(k) / log  R is a universal function F(0) of the variable 8 = log k / log R 
(k is the wavenumber). From the curve F(0) it should be possible to mea- 
sure the multifractal spectrum of singularities. The prediction received a 
preliminar confirmation in convection [2] and in turbulence [3]. 

Similar arguments can be developed for the dynamical systems and~ 
more generally, for the multifractal measures [4]. In this case, the viscosity 
is substituted by an artificial noise threshold introduced in the system. 
Multiscaling is observed in the behaviour of the moments of the measure 
with respect to the scale. The parameter entering in the rescaling is the 
value of the noise threshold. 

R e f e r e n c e s  

[1] V. Frisch and M. Vergassola, Europhys. Left., 14, 439, (1991). 

[2] X.Z. Wu, L. Kadanoff, A. Libchaber and M. Sano, Phys. Rev. Left., 
64, 2140, (1990). 

[3] Y. Gagne and B. Castalng, submitted to C.R. Acad. Sci., (1991). 

[4] M.H. Jensen, G. Paladin and A. Vulpiani, submitted to Phys. Rev. 
Left., (1991). 



ON F A S T  D Y N A M O  A C T I O N  IN S T E A D Y  C H A O T I C  F L O W S  

Andrew D. Gilbert. 
D.A.M.T.P., Silver St., Cambridge, CB3 9EW, U.K. 

The fast dynamo problem (Vainshtein ~z Zeldovich 1972) concerns the study of the 
induction equation: 

OrB = V x (u × B) + yV 2 B, v .  B = 0, (1) 

in the limit of very weak magnetic diffusion 77. The equation governs the evolution of 
magnetic field in a flow u(x, t) of a conducting fluid with conductivity l/r/. We generally 
take the flow u(x, t) to be prescribed and neglect the effects of the Lorentz force. This 
gives u s a  linear problem, the kinematic dynamo problem, which addresses the stability 
of the flow to weak magnetic fields. We call the flow u(x, t) a dynamo if, for some value 
of r/, the fastest growing solution of eq. (1) has a positive growth rate, Pmax(U) > 0; the 
flow is a fast dynamo if this growth rate remains positive and bounded away from zero 
in the limit of very weak diffusion r/: 

lim p.,~x(r/) > O. 
T/----~O 

In other words the growth rate remains on the convective time-scale (defined when the 
flow u(x, t) is given) in the limit of very long diffusive time-scale. The fast dynamo 
problem is essentially to find flow fields that can be shown to be fast dynamos. The 
study of the kinematic dynamo problem and the fast dynamo problem is relevant to 
understanding the generation of magnetic field in the earth, sun, galaxy and other 
astrophysical bodies (see, for example, Moffatt 1978, Zeldovich et al. 1983). 

Some of the difficulties of the fast dynamo problem may be seen by setting ~/= 0 in 
eq. (1); this gives the equation for the passive transport or Lie-dragging of the magnetic 
field in the flow u(x, t). The equation is now first order and is solved by the Cauchy 
solution: 

B(x, t) = o~/ax0 • B(x0,0). (2) 

Here x0 is the initial position of the fluid element which lies at x at time t. For a flow 
of any complexity the magnetic field becomes stretched and folded by the flow, and its 
scales decrease indefinitely. If the flow is chaotic field vectors will grow exponentially 
and different moments of the magnetic field will grow exponentially at different rates. 
Eigenfunctions of eq. (1) may only exist in a weak sense (Moffatt & Proctor 1985, 
Childress & Klapper 1991, Bayly 1991). 
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The introduction of very weak diffusion regularises the problem by smoothing out 
field on scales below some small-scale diffusive cut-off and leads to smooth eigenmodes 
of eq. (1); however these eigenmodes will still have complex structure above this cut-off. 
Furthermore diffusion can lead to complete decay of the field, for example if the flow 
field is two-dimensional (Zeldovich 1957). In two dimensions the flow stretches field and 
folds it in such a way that one obtains small-scale alternating field, which is then wiped 
out by diffusion. However in three dimensions it is possible to stretch and fold field in 
such a way as to align it (as in the "rope dynamo" of Vainshtein & Zeldovich 1972) 
and it seems likely that diffusion then merely smooths over small-scale variations and 
allows exponential growth of field and fast dynamo action. Thus, at least at a heuristic 
level, the question of fast dynamo action is connected with whether a chaotic flow folds 
field in a constructive way (so that the field tends to be aligned) or in a destructive 
way (alternating directions of field) (Finn & Oft 1988). This connection can be made 
rigorous in a number of idealised models (Bayly ~ Childress 1988, 1989, Finn et al. 
1990, Childress & Klapper 1991, Klapper 1991). 

Little progress has been made on proving mathematically that a smooth deter- 
ministic flow in a bounded or periodic domain of ordinary three-dimensional space can 
give fast dynamo action. It is known that exponential stretching is required (Vishik 
1989) but it may be sufficient that this occur at isolated points or surfaces rather than 
in chaotic regions of positive measure. There is, however, strong numerical evidence of 
fast dynamo action in unsteady chaotic flows (Bayly &: Childress 1988, 1989, Finn & Oft 
1988, Otani 1989). Also fast dynamo action has been proved in a number of idealised 
models involving flows on manifolds of negative curvature (Arnold et al. 1981), maps 
with discontinuities (Bayly & Childress 1988, 1989, Finn & Oft 1988, Finn et al. 1989), 
laminar flows with singularities (Soward 1987, Gilbert 1988) and flows in unbounded 
space (Finn et al. 1990). 

Our research concerns fast dynamo action in steady flows. It has been suggested 
that these are generically fast dynamos, on the basis of certain models (Finn et al. 1990). 
The flow fields that have attracted most interest as possible fast dynamos belong to the 
ABC family. This is a family of solutions of the Euler equation: 

u(x) = ( C sin z + B cos y , A sin x + C cos z, B sin y + A cos x ), (3) 

given by three parameters, A, B and C. For general values of the parameters, these 
flows possess very complex streamline topology, with a mixture of chaotic regions and 
integrable vortices (Dombre et aI. 1986). Dynamo action has been studied numerically 
in certain of these flows (Arnold & Korkina 1983, Galloway & Frisch 1986) but evidence 
for fast dynamo action is somewhat inconclusive. 

In our work we have studied a model flow based on near-integrable ABC flows with 
parameter values A = B = 1, C << 1. If C is actually zero, the flow is integrable, having 
a cellular structure with a lattice of stagnation points joined by separatrices. As C is 
increased from zero these separatrices break up and form chaotic layers; the network of 
these layers, which extends periodically in space, is called a chaotic web (Beloshapkin 
et al. 1989). Within the web fluid elements may have chaotic or regular motion. We 
constructed a model based on such a near-integrable ABC flow; essentially we took 
leading order approximations to the ABC flow and patched these together (for details 
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see Gilbert & Childress 1990). The resulting model flow has a number of qualitative 
features in comon with the near-integrable ABC flow; because of its construction the 
motion of particles and field vectors can be reduced to iterating maps, which allows 
relatively easy numerical exploration of magnetic field stretching and folding. Figure (1) 
shows a Poincar@ section of the flow: points are plotted where fluid elements repeatedly 
intersect the section. There are both regular and chaotic orbits present. 

Figure (1). Poincar6 section of the model flow. 

We have followed the evolution of various initial magnetic fields in this flow using 
the Cauchy solution (2). Figure (2) shows the vertical component of the magnetic field; 
the area depicted corresponds to the box marked in the Poincar~ section in figure (1). 
White is plotted where the vertical field is negative, and grey where the field is positive, 
with black corresponding to the strongest positive field. The initial condition is: 

B(x, 0) = ( -  sin v%, cos v%, 0). (4) 

There is clear visual evidence of constructive folding taking place within the flow: on the 
bottom left of both (2a) and (2b) there are bands of positive (grey) field accumulating; 
on the mid right of (2a) the field is largely negative (white) while in (2b) the field here is 
mostly positive (grey). We have confirmed this by computing the mean field in chaotic 
parts of the flow and have found clear growth with oscillations (Gilbert K: Childress 
1990), but at a rate less than the Liapunov exponent, because of cancellation. These 
calculations have been extended to real ABC flows in the case A = B = C = 1 and 
again we have found evidence for constructive folding and the exponentiM growth of 
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mean fields in the absence of diffusion (Gilbert 1991) with growth rates similar to those 
obtained by Galloway ~ Frisch (1986). 

(a) (b) 

Figure (2). The vertical component Bz of magnetic field in the box shown in figure (1). 
White corresponds to negative Bz, and grey corresponds to positive Bz, the strongest 
field being shown in black. The initial condition (4) is evolved to (a) t = 130, (b) 
t = 180. 

We have observed constructive folding in the case of ABC flow with A = B = C = 1, 
and a model flow, patched together and qualitatively similar to a near-integrable ABC 
flow. This is suggestive of fast dynamo action, since one would expect diffusion to 
smooth over the fine-scale structures while preserving the growing mean field that we 
observe. However it remains to be proved that constructive folding is sufficient for fast 
dynamo action in realistic flows (see Klapper 1991 for recent developments). Such a 
proof would reduce the fast dynamo problem to proving that constructive folding can 
occur in realistic chaotic flows, which is itself an open problem. 
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MAGNETIC STRUCTURES IN FAST DYNAMO 

Alexander A. Ruzmaikin 
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The fate of a smoke or other scalar in a turbulent air is well known. It disappears 

asymptotically in time in accordance with the maximal principle. The asymptotic 

behavior of the magnetic field vector can be completely different. The field in a given well 

conducting fluid will exponentially grow with a rate of growth independent on the 

conductivity for a class non-integrable or non---stationary flows called "fast dynamos"(see 

for instance Zeldovich et al.,1983). 

Some examples of the fast dynamo are constructed numerically or analytically. 

Among them are a direct numerical simulation of the homogeneous isotropic turbulence of 

conducting fluid by Meneguzzi, Frisch and Pouquet (1981); the ABC flow v(x) = (Asiny 

+ Bcosz, Bsinz + Ccosx, Csinx + Acosy) (Galloway and Frisch, 1986); a helical flow 

v(x,t) = asin(qx -t- ¢) ÷ bcos(qx -t- ¢), aq = 0, b ± a, where the amplitudes and phazes of 

the wave are random values renewing after a time r (Gilbert and Bayly, 1990); the 

short-correlated in time random flow for which r0jvi is a Brownian process (Molchanov, 

Ruzmaikin and Sokoloff,1985). The other examples are the fast dynamo maps of the 

Baker's type (Finn and Oft, 1988). The dynamo theorem proved by Molchanov, 

Ruzmaikin and Sokoloff (1984) states that a three-dimensional random motion of general 

type renewing after a finite time r can act as the fast dynamo. 

Childress and Soward (1984) shows that the problem of evaluating the magnitude 

of so called a--effect important for the mean magnetic field generation (see Moffatt,1978) 

is closely connected with the fast dynamo problem in the limit of large magnetic Reynolds 

number. 

A common feature of all fast dynamos is an intermittent structure of the 

self-excited magnetic field. At large magnetic Reynolds numbers (the high conductivity 

limit) the magnetic field is distributed in the form of ropes (or possibly also layers) 

occupying a small part of the volume but keeping almost all magnetic energy. As some 

examples demonstrates, in the limit of the infinite magnetic Reynolds number the 

magnetic field may be concentrated in a fractal set. The distribution of the intermittent 

magnetic field is essentially non-Ganssian, a probability of large deviations (the magnetic 

concentrations) is high. In that sense the intermittency has pure probabilist~c origin in 

contrast to the non-linear nature of hydrodynamic and other known structures. The 

dynamo equations with a given velocity field are linear in magnetic field. 
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Does the intermittent structure conserve in the non-linear regime? The answer to 

this question is not evident because a back influence of the magnetic field on the motion 

first starts namely in the vicinities of the ropes. However one (not very realistic) example 
of a non-linear fast dynamo giving a stationary intermittent magnetic structure is 

constructed (Dittrich, Molchanov, Ruzmaikin and Sokoloff, 1988). 
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Abstrac t  

We present new rigorous results about the wavelet analysis of measures on a 
fractal set. The very definition of the wavelet transform allows us to introduce set 
functions exhibiting a transition point in correspondence with a particular fractal 
dimension of the set. We illustrate these results on some numerical examples. 

In this article we present new rigorous results [1, 2, 3] about the wavelet analysis of 
fractal sets. These results can be used to compute numerically various fractal dimensions 
of a set or bounds to them and, in general, to investigate the multifractal structure of the 
sets generated in physical situations [4]. 

The wavelet transform of a finite measure # on a compact set J with norm I].11, is 
defined as [5] : 

T,(#,  a, x) = a d#(y) (1) 

We found the following assumption fundamental to establish rigorous results : 
( W - l )  g is a real function of class C1 (~ )  and : 

lim 1 ( r )  ~-~o+ a-~g = 0 for r > 0 and p > 0. (2) 

In order to prove the theorems 1 and 2 below, we need a further assumption that ,  strictly 
speaking, goes beyond the usual properties of a wavelet [6], although numerical compu- 
tations show that  it can be weakened : 

1pHYMAT, D~partement de Math~matiques, Universit~ de Toulon et du Var, 83957 La Garde Cedex, France. 

2Supported by Contrat CEE n. SC1"0281. 
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(W-2)  g(r) is monotone for r k 0. 

This assumption is also explicity used in a recent paper by Falconer [7]. 

In [2] we introduced the integrated wavelet transform (IWT) defined as : 

Tp(#, a) = f j  Tp(#, a, x)d#(x) (3) 

and we showed that the asymptotic behavior of the IWT gives a fractal dimension of the 
set. To understand it, we now introduce the function: 

Vp(#) = limsup [Tp(#, a)[ (4) 
a---+0+ 

By the very definition it follows the existence of a unique transition point p,  such that : 
Vp(#) = 0 for p < pu and Vp(/~) = +c~ for p > p~. 

For a class of dynamic invariant sets, we found that  pu coincides with the correlation 
dimension of the measure # and so is independent of g. Those sets are the disconnected 
conformal mixing repellers [8], among which there are the disconnected hyperbolic Julia 
sets and the "cookie-cutter" Cantor sets. If J is such a set, we put on it the Gibbs measure 
#8,/3e~, which is defined as the unique ergodic measure maximizing the expression : 

P(fl) = h(#~) -/3"),+(#Z), (5) 

where h(#) is the /~-Kolmogorov or metric entropy and 7+(#) the positive Lyapunov 
exponent of the measure # [9]. P(/3) is called the topological pressure and is a real 
analytic convex function of/3. In [2] we proved : 

T h e o r e m  1 : / f l imsup  ]Tv(#z,a)[ is different from 0 and +0% then p = Pu~ satisfies: 
a--}O+ 

P ( 2 / 3 -  p) = 2P(/3). The same result holds/fl iminf [Tp(~z, a)[ :~ (0, +ec).  
a---+0+ 

The value of pu~ coincides with the generalized dimension of order 2, Du~(2), defined 
by the usual partition function approach [10] : it is also called the correlation dimension 
and denoted with u (without reference to the measure). 

In [2] we indicated how to generalize the theorem by means of the following argument 
: the IWT can be written as : 

1// 
ITp(#, a)[ ,,~ ~ C(r)g' (6) 

where A is the diameter of J and the symbol ,,~ means that  we neglect an additive term 
that is always zero in the limit a --+ 0 + (for non atomic measures). The function C(r) is 
the correlation integral 

C(r) = 0(r - f i x  - yJ l )d , (x )d . (y )  (7) 

and for several fractal sets it scales like [11, 12] : 

C(r)  ~ r" (S) 
r---*0+ 
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Assuming (8) up to the diameter A of the set and substituting in (6) we immediately 
get : 

log ITp(#, a ) I ' ~ +  (u - p)log a + oscillating terms (9) 

We checked numerically the scaling (9) for linear Cantor sets with different scales and 
the Gibbs measure #0 (balanced or maximal entropy measure) and we recovered the 
correlation dimension with great accuracy [2]; moreover the asymptotic behavior of the 
IWT was affected by oscillations which is a phenomenon already known as lacunarity for 
the correlation integral [13]: in a few cases, the oscillations of the IWT can be completely 
explained [2]. For example for the ternary Cantor set, we get [2] : 

1 
T0(#0, a) = ~T0(#o, 3a) + o(1), a --+ 0 + 

where the o(1) term converges to zero faster than any power of a by (W-l) .  A general solu- 
tion of the preceding relation without the o(1) term is : a~¢(log a), where ¢ is a continuous 
periodic function of log a of period (log 3)/k, keJN and a = log 2 / log  3. Figures la  and 

lb  show the numerical results ; in particular, in figure la, we report log ITo(a)l vs. log a, 
but  the amplitude of the oscillations is very small and does not appear. Nevertheless, it is 
particularly evident in figure lb,  where we plot (log ITo(a)l- D2 log a vs, log a), where 
D2 is the true value of the correlation dimension. Apart a straightforward extension 

to the disconnected attractors of the hyperbolic iterated function systems [3], rigorous 
generalizations of the theorem above are not easy ; we have a partial result [3] : 

let us consider a system satisfying the condition : 

lim log #(B(x, r)) = constant = HD(#) (10) 
~--.o+ log v 

for x ~t-almost everywhere and being B(x, r) a ball of center x and radius r. If 
l imsnp ITp(#,a)l < +oo, then p < HD(#) < dn(J), being dn(J) the Hausdorff 

a-*0+ 
dimension of J .  

We conjecture that if l imsup [Tv(Iz, a)] < -t-oo whenever /z is an invariant measure 
a---~0+ 

on the class of conformal repellers quoted above, then p < dH(J). Note that the Gibbs 
measures are dense in the space of the invariant measures. 

The limit (10) often occurs for dynamical invariant sets endowed with ergodic measures 
[14] and its constant value is called the information dimension, or generalized dimension 
of order 1, D~, (1). 

Our guess is that,  in general, whenever l imsupITp(#,a)l  < +c¢, then 
a-+O+ 

p < dH(J). We can only prove a weaker version of this conjecture in terms of the wavelet 
transform Tv(#, a, x). First of all we define the p-wavelet capacity of the set J as (from 
now on J will be  a compact subset of ~'~): 

D , ( J )  = sup Wp(•); J supports ~ and p(J )  = 1 (11) 
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where : { } Wp(#) = inf [llimsup ITp(#,a,x)l II~,A (12) 
a---~0+ 

being A any measurable set of positive #-measure. We have the following : 

Theorem 2 [3] : 

Dp(J) = + ~  for p < dH(J) and Dp(J) = 0 for p > dH(J) , (13)  

that is, Dp( J) behaves like the Hausdorff p-dimensional measure of J. 

(See [15] for a definition of the Hausdorff measure). 

This implies that whenever, for a finite measure #, 
IIlimsup]Tp(#,a,x)l IIo~,A < ~ ,  with A any set of positive #-measure, then 

a---~O+ 
p < dH(J). We guess that the same theorem holds substituting the function Wv(#) 
with W(#) defined in (4) in terms of the IWT ; in our opinion such results show the 
close relationship between the wavelet transform and the fractal geometry. The preceding 
theorem can be considered as the global version of a local analysis of the fractal measure, 
which holds for a class of wavelets larger than those satisfying (W-2) and containing in 
particular the mexican-hat g(r) = (1 - r 2 ) e  -~2/2, and that was qualitatively studied in 
[5]. We introduce, in analogy with (4), the function 

Vp(#, x) = lim sup ITp(#, a, x)l (14) 
a-*0+ 

and call p.(x) its transition point. Then, we have : 

T h e o r e m  3 [1] : I f  ~(x) = liminf log#(B(x,r)) is the local scaling exponent of the 
r--~0+ log r 

measure # at the point xeJ, then : 

p.(x) > (15) 

Note that  theorem 3 is not sufficient to conclude that, whenever p > dH(J), then 
Vp(#, x) > 0, but this follows directly from theorem 2, that is : 

C o r o l l a r y  4 : If  p > dH( J), then 

limsuplTp(#,a,x)l = +co for # - almost xeJ. 
a-..*O+ 

Combining with Theorem 3, we finally get : 

~(x) < p,(x) < dH(J) for # - almost x~J. 

This result is important for the numerical pictures of the wavelet transform, because it 
guarantees us that,  taking p > dH(J), the absolute value of the wavelet transform could in 
general oscillate, with relative maxima growing to infinity when a --+ 0 + for #- almost all 
the points xeJ, and the amplitude of these oscillations is just governed by the exponent 

We now illustrate this result by performing the numerical analysis of the wavelet 
transform for some dynamic invariant sets not previously investigated, namely : 
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i) The Lozi attractor generated by the mapping 

x' = l + y - l . 7 ] x ]  
y' = 0.5 x 

ii) The invariant set for the Baker transformation : 

x , = S  %x for y < ~  
/ 1 ~+') 'bx for y > a  

1 for y < a  
lY~I-~(Y-~) for y > a  

y' 

We have chosen 3'~ = 0.2, % = 0.3, a = 0.4. 

iii) The connected Julia set for the mapping z' = z ~" - ! 
4" 

We report in figures 2-3-4 the absolute value ITp(#, a, x)l of the wavelet transform of 
the measure #, # being the Sinai-Bowen-Ruelle measure for the Lozi and Baker maps and 
the balanced measure for the Julia set. We have chosen p = 2 according to the preceding 
discussion. 

All the relations proposed in this paper could be summarized in the following ap- 
proximative scheme, suitable for numerical investigations. Note that,  apart (16ii) that is 
conjectured, all the others give the same transition point independently ofg : 

]Tp(#, a ) ] ~'o+a*'-v 
inf ]Tv(#,a)l "~ a p-dH(J) 

tt a---~0+ 

ITp(~, a, x)I ~+a~(:),  p 

i n f / s u p  ]Tp(ma, x)[,g(A) 
[ xeA 

> O} ~o+" aP-a'(a) 

(16i) 

(16ii) 

(16iii) 

(16iv) 

(16) 

The scalings (16) clearly show that the wavelet transform and the IWT are very useful 
tools to investigate both the local and global geometrical properties of a measure on a 
fractal set. These properties always arise as transition indices between two well defined 
(0 and c¢) asymptotic regimes and therefore they can be easily detected as the exponents 
of a power law decay in a log - l o g  plot. Moreover, thanks to (6) the choice of a wavelet 
decaying sufficiently fast at infinity could notably accelerate the convergence of the limit 
for a --* 0 + : in this respect the wavelet transform is more flexible than other integral 
methods to detect the fractal dimensions. 

It is important to point out that  the scalings (16) effectively occur in the numerical 
analysis of the fractal measures : see, for instance [2] and for (16iii) the extensive numerical 
study in [4]. Besides, in a few simple examples (smooth sets in ~ n  and the ternary Cantor 
sets), an analytic calculation of the IWT can be completely done [2]. In all these examples 
the choice of the wavelet is large : numerical computations indicates that the theorems 
quoted above are true for non-monotone wavelets, for example for the mexican-hat that 
is used throughout [4]. 
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Our goal in this article was to show that, for the mixing repellers and, in full generality 
after having defined a suitable object (the wavelet-capacity), it is possible to put the 
wavelet analysis of fractal sets on a mathematical basis. 
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Figure  2 

IT2(p, a, z)l (on the vertical axis) for a -- 10 -3 and x on the Lozi attractor (in the horizontal plane) 
with g(r) = ( 2 - r 2 ) e  -r=/2 . The Lozi attractor is reproduced in the upper right comer of the figure. 
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An analysis of the inviscid mixing of a turbulent jet in crossflow is made. An ex- 
perimental database is analyzed by means of a technique based on the Karhunen-Lofive 
procedure. It is shown that mixing which increases with downstream distance is charac- 
terized by the increasingly prominent role played by spatially complex eigenfunctions. A 
firm quantitative basis is presented which supports this visual perception of complexity. 

Introduction 

Mixing plays a vital role in a wide range of natural, engineering and technological pro- 
cesses. This paper is primarily concerned with the nature and description of these mixing 
processes, and provides the development of a framework, some tools and even a language 
by which to discuss mixing in quantitative terms. A longer range goal of this research 
is to develop methods and criteria for the management of mixing. While we focus on a 
problem arising from gas turbine combustor design, the methodology developed is equally 
applicable to virtually every aspect of technology and engineering where mixing processes 
are important. 

The dilution zone of a gas turbine combustor is the region in which coolant air is 
injected and mixed with combustion gases to achieve the correct turbine inlet temperature. 
Current designs for the dilution zone resort to a series of round jets, injecting cold air at 
right angles to the primary gas flow to achieve the highest degree of mixing. The rate of 
mixing however, is strongly influenced by the hole shape, momentum ratio of the jet to 
primary flow, turbulence level, axial distance, etc. To date, mixing optimization has been 
largely an empirical process, while any assessment of induced mixing has been indirectly 
inferred. The present study will focus on a model problem of the dilution zone, viz. a 
subsonic jet in a crossflow. Such problems have been previously studied experimentally by 
Vranos. 1 In their experiment advanced data acquisition techniques using optically based 
diagnostics 2 furnish us with a wealth of detailed and highly resolved data. 
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While the data that  will be analyzed below are from a physical experiment, the 
methodology presented is generally applicable and could just as easily have been ap- 
plied to a computationally generated database. An additional feature of the investigation 
relates to the treatment of large databases in general. Our methods give a format for 
analyzing and compressing these in a physically relevant way. a As will be seen, all of this 
is accomplished by generating an intrinsically defined basis set of describing functions, 
which in a well defined sense are optimal. 

Although it is not necessary to restrict attention to two-dimensions, all our delibera- 
tions will refer to concentration fields in two-dimensional slices of a flow. We will denote 
the fluctuation in a concentration at a time t by c(x, t) where x = (x, y) is a position in 
the plane. If we denote a time average by, 

1 rT/2 
< c > =  ~ ]_T/2C(x,t)dt, (1) 

then the fluctuation is defined such that  

£ < c(x) > dx = 0, (2) 

where A denotes the area of the slice. 
Perhaps the coarsest and most widespread measure of a passive scalar concentration 

field is it rms value: 
~(x) = <  c2(x) >1/2 (3) 

The smaller the average value of ~: 

c,,~, = A fA~(X)dx (4) 

the bet ter  is the mixing. While (3) furnishes us with information that  locates and measures 
the fluctuations, it does not address the issue of what are the scales of the fluctuations. 
This is of great importance since the texture of the concentration field determines how 
soon molecular diffusion plays its final role. When viewing fine grain versus coarse grain 
fluctuations of equal magnitude, it is clear that  the former is more rapidly mixed than 
the latter. 

This simple observation suggests that  finer measures of mixedness should be employed. 
For example, if it makes sense to speak of the Fourier transform of c(x), ~(k), then we can 
use the spectral entropy 

f ~ 21c= (5) S = - e(k) lne(k)dk,  e = , . . . .  

where e(k) is the energy at wavenumber k. Two other measures which will be discussed 
later are, 

1 r lW I dx 
D1 = "A J Crms (6) 

and 
1 / I  Vc 12 dx 

D2 = -~ 2 
Crms 

(7) 
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The first of these (5) addresses the diversity of scales, while (6) and (7) bring out the 
importance of small scales in mixing. It should be noted that both (6) and (7) are dimen- 
sional and should be normalized with respect to the Kolmogorov scale. More specifically, 
we are the addressing that part of the mixing process that is inviscid (large scale) and 
which precedes molecular diffusion (small scale). 

A shortcoming of the above discussion is the absence of physics, more specifically the 
isolation of the basic patterns by which the mixing process takes place. If the mixing 
process can itself be decomposed into fundamental patterns or modes of mixing then we 
can hope to proceed to the goal of managing the mixing process by manipulating these 
fundamental modes. 

Karhunen-Lo ve ( K - L )  p r o c e d u r e  

The K-L procedure was proposed by Lorenz 4 and by Lumley 5 for the analysis of turbu- 
lence data. In the former instance to treat meteorological data, and in the latter case to 
isolate coherent structures. In each instance time series or their equivalent were consid- 
ered. In recent years it has been shown that fully three dimensional phenomena can be 
treated by this method. 6y This has been accomplished by the method of snapshots which 
we now briefly develop within the framework of the jet in cross flow, which we analyze in 
detail in the Results section. 

We consider the fluctuation field in a plane orthogonal to the jet and denote it, as 
earlier, by c(x,t). We assume that the mean value has been subtracted so that (2) is 
satisfied. The concentration fluctuation is captured instantaneously at a uniformly spaced 
sequence of instants and the resulting ensemble of such states is denoted by 

{c <~)} = {c(~)(x)} = {c(x,t,)} (8) 

where as indicated the superscript denotes the instant of time. Typical concentration 
profiles are shown in Figure 1. 

To develop the K-L procedure we pose the question: Is there some concentration profile 
which is most typical? Stated analytically, for what ¢ is 

1 ~ ( /  )2 
< (¢,c) 2 > =  ~ ¢(x,y)c(")(x,y)dxdy (9) 

n = l  

a maximum? (Note that the time average is replaced by a discrete average.) For this to 
make sense there must be some constraint on ¢. E.g., since we regard ¢ as a concentration 
fluctuation we require 

2 = E, (10) II ¢ II 2= (¢,¢)  = <  (c,c) > =  crm, 

although any such requirement will suffice. (In the following E will be termed the energy.) 
The result of the variational problem posed by (9) and (10) is that ¢ satisfy 

f g ( x ,  x')¢(x)dx = A¢(x), (11) 
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Figure 1: Three typical cross-sectional snapshots compared to the time-average concen- 
tration for a subsonic jet in crossflow. The jet orifice was at the top of the pictures. 

where 
1 ~v 

K(x,x ' )  = <  c(x)c(x') > =  ~ E c(J)(x)c(J)(x'), (12) 
d=l 

is the autocorrelation of the ensemble of concentrations. The eigenfunction equation (11) 
generates a complete set of functions each of which satisfies the extremal conditions (9) 
and (10), along with the side condition that it be orthogonal to all previously generated 
eigenfunctions. Without loss of generality we can take the set of eigenfunctions to be an 
orthonormal set. 

A considerable reduction in the complexity of the problem is achieved by recogniz- 
ing that an eigenfunction which satisfies (11) with K such that (10) holds must be an 
admixture of instantaneous snapshots, i.e., we can write 

N 
¢(x, = (13) 

j----1 

This reduces the integral equation, which in general may have support in many di- 
mensions, to the relatively simple step of the diagonalization of matrix of order N. This 
version of the K-L procedure is known as the method of snapshots. As a result of the 
completeness of the eigenfunctions we can express the time dependent concentration in 
terms of the eigenfunctions {¢n(x)} as follows 

oo  

= (14 )  
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Figure 2: Schematic diagram of a subsonic jet in crossflow. The jet fluid is injected with 
velocity vj into a crossflow having mean velocity vc. 

where 
an = (¢~, c). (15) 

The set {¢~} is termed the empirical eigenfunctions and they have the property that 
the variance 

N 

=<11 c -  Ea.¢  115> 1/2 (16) 
j = l  

is minimal (for any N) over the class of all admissible orthonormal basis sets. One 
additional characterization is that with the empirical eigenfunctions, and only with these, 
are the coefficients decorrelated 

<a~a..>=O, m#n, (17) 

and from this the (information) entropy is minimal amongst all representations, s Using 
this it follows from the definition (12) that 

2 < > =  (18) 

so the eigenvalue measures the mean square projection of the ensemble onto the associated 
eigenfunction. 

E x p e r i m e n t a l  p r o c e d u r e  a n d  d a t a b a s e  

A round jet injected at right angles to a subsonic primary stream induces the characteristic 
flow structure seen in Figure 2. Initially, the jet begins with an inviscid or potential 
core, persisting until viscous mixing effects predominate. The deflection of the jet by 
the primary stream induces a pair of counter-rotating vortices that result in the familiar 
kidney-shaped jet cross-section on average. An inviscid secondary flow mechanism ° is 
responsible for their generation. 

The character of the flow depends upon the momentum, pjVj 2, carried by the injected 
fluid gas to that of the crossflow gas, pcV 9. This momentum ratio, M = pjVj2/pcVj 2, was 



334 

varied by changing the velocity of the injected fluid at constant cross-flow velocity. The 
experiments were conducted over a Reynolds numbers in the range 50 000 - 80 000 based 
on jet diameter and crossflow conditions. The working fluid was air at room temperature 
and jet velocities were sufficiently low to eliminate compressibility effects. 

Planar digital imaging of the light scattered from small aerosol particles was used to 
assay the flow. This technique, known as Lorenz-Mie scattering, is based on the principle 
that, for a gas seeded uniformly with aerosol particles, the intensity of elastically scattered 
light from the aerosols is proportional to the concentration of the seeded gas. Planar 
digital imaging has been demonstrated as an effective, quantitative diagnostic technique 
in small laboratory jets by Long et al. 2 Planar nephelometry measurements were made by 
marking the flowfield with small aerosol particles introduced into the nozzle gas and briefly 
illuminating transverse sections of the jet by reflecting a beam of unfocused argon-ion laser 
light with a rotating mirror. The elastically scattered light was imaged onto a low-light- 
level vidicon camera and digitized. The fluid motion was frozen by exposing the detector 
for only 10#s coincident with a single sweep of the laser beam through the flowfield. The 
rotation rate of the mirror was sufficiently fast so that all measurements within the frame 
are considered simultaneous. Each image consists of approximately 10 000 data points 
arranged in a 100 by 100 pixel format. The raw images were corrected for background 
response due to detector noise, scattered light and laser sheet non-uniformity. 

The database we analyse here is comprised of three sets of images collected at 4, 6 
and 8 jet diameters downstream from the jet orifice, together with two additional sets 
collected at the 8 diameter station; one with a higher momentum ratio and the other with 
a lower momentum ratio. Each set consists of approximately N = 500 snapshots. 

Figure 1 shows three instantaneous realizations and the average concentration field of 
500 realizations for the low momentum ratio. For each of the five databases described, 
we have doubled the ensemble size by adding to each ensemble the mirror images, in the 
vertical midline, of each ensemble member. In doing this we are exploiting the natural 
symmetry of the equations governing the flow, which imply that if c~(x, y) is a snapshot, 
then c~(-x ,  y) is also a valid snapshot. This addition to the ensemble produces eigenfunc- 
tions that are either odd or even in the vertical midline, a result that would not otherwise 
be realized unless the ensemble size were extremely large. 

While the data represent the large scale flow structure well in the concentration pro- 
files, a considerable degree of noise and drift were present in the images. To standardize 
this large database for comparison between different experimental conditions and data 
acquired over long periods of time, the data were normalized in the following manner. A 
reference value for each snapshot was determined from a 10 by 10 pixel area containing 
no seeded fluid in the corner of each snapshot. A systematic drift in the measured con- 
centration was eliminated based on these values and the data were then rescaled so that 
the mean concentration flux through each picture was constant. In addition, filtering in 
Fourier space was used to remove some background noise. While this renormalization 
changes the concentration values and hence the dynamic range, the macroscopic flow 
structure remains preserved. 
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Figure 3: First twelve empirical eigenfunctions from the low momentum ratio ensemble. 
Light grey represents a postive fluctuation and dark grey a negative fluctuation, and the 
background grey represents zero 

Re s u l t s  and discuss ion 

The K-L procedure was applied to each of the five ensembles of concentration fluctuations 
to find the empirical eigenfunctions. In presenting the eigenfunctions we will generally ar- 
range them in descending order of the magnitude of the eigenvalues, (18). Each eigenvalue 
is a measure of the degree to which the corresponding eigenfunction has been excited. If 
we divide the eigenvalues by the energy (10), 

An 
p , = - ~ - ,  (19) 

then p~ can be interpreted as being a probability. It tells us the probable degree to which 
the jet cross-section is in the state described by ¢~(x). Figure 3 contains the first twelve 
eigenfunctions for low momentum ratio ensemble. We have chosen this case to illustrate 
the nature of the eigenfunctions both because of the lower degree of complexity which 
results from its low momentum ratio, and the relatively high signal to noise ratio. As 
a result of the former, the seed concentration is still poorly mixed and the eigenfunc- 
tions then are naturally arranged in order of increasing raixedness by their corresponding 
eigenvalues. The first eigenfunction shown reflects the fact that although < c > =  0, at 
any instant the concentration need not have a zero spatial average since temporal pulsa- 
tions are generally present. The second most probable eigenfunction allows for bilateral 
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Figure 4: Comparison of the first five eigenfunctions at the 4 (top row), 6 and 8 (bottom 
row) diameter stations. The eigenfunctions in each row are ordered by the associated 
eigenvalues, with the most energetic at the left. 

variation. It has two cells, the third has three cells and the fourth has four cells. The 
complexity and cell number is seen to increase as we proceed through the list of eigen- 
functions. As we go down the list of eigenfunctions we see the possibility of increasing 
breakdown in the length scale by increasing complexity in the patterns. The notion of 
complexity is visual at this point and will be made more precise later in this section. 

Figure 4 shows the first five eigenfunctions derived from data collected at the 4, 6 and 
8 diameter stations. The first row corresponds to the section closest to the jet, where 
the mixing is poorest. There is, in fact, a close resemblance between the first row and 
Figure 3. 

We adopt as a reasonable criterion for well mixedness, that more highly complex 
patterns become more probable. Such a trend is apparent from the rows of eigenpictures 
in Figure 4. It is apparent that mode crossing is occurring and that at 8 jet diameters 
downstream the dominant pattern is made up of four cells. Moving down the three rows, 
an increase in complexity is apparent, reflecting the progression in the mixing process as 
we move downstream. 

Our use of the term complexity has been based, thus far, on visual appearance. We 
next make this notion more precise by defining several different measures of complexity. 
The first of these, termed the S-complexity, is based on the total length of the nodal lines 
of a function. In Figure 5 we show the nodal lines which correspond to the eigenfunc- 
tions of Figure 3. Simple functions, with few cells, have short nodal lines while convoluted 
functions have correspondingly longer nodal lines. In practice, the nodal line depends sen- 
sitively on the amount of experimental noise which contributes extraneous zero crossings 
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Figure 5: Nodal lines for eigenfunctions derived from the low momentum ratio data set 
(Figure 3) used to determine S-complexity. 

and we prefer to use contours at heights -t-z: 

S ( ¢ ) -  2A1/2 (z) (-z) ' 

where 7(z) denotes the level curve of ¢(x, y) at height z. The S-complexity is normalized 
by AU2, the square root of the area of the eigenfunction picture and is therefore dimen- 
sionless. The S-complexity fails to account for the characteristics of the eigenpictures that 
do not intersect the level curves 3,(-4-z). Two measures that may be regarded as the sum 
of the lengths of all the level curves are 

D 1 -  A1/2 I V ¢ l d A  

and 
= f (V¢)=dA. 

(21) 

(22) 

Both of these measures, which have been defined to be dimensional, are equivalent to (6) 
and (7). 

The second of these is weighted by V¢ to emphasize level lines passing through regions 
where the function changes rapidly. These measures, too, are susceptible to experimental 
noise propagated through to the eigenpictureo However, an initial smoothing (by filtering 
in Fourier space) of the experimental snapshots yields broad agreement between D1 and 
D2. 

The spectral entropy is given by 

a = - [ c(k) in ~(k)dk, (23) 
J 
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Figure 6: Eigenvalues at the 4, 6 and 8 jet diameter stations plotted in order of increasing 
D2-complexity of the corresponding eigenfunction. 

where c(k), the energy at wavenumber k, is the square magnitude of the Fourier transform 
of ¢(x). It follows therefore that c(k) is a probability, i.e. 

f e(k)dk = 1. (24) 

The one-dimensional form of (23) has been used to characterize the complexity of certain 
patterns occurring in thermal convection) ° If the eigenpicture is a single Fourier mode, 
then the spectral entropy is zero, whereas if the energy is distributed uniformly amongst 
all the modes, then e ~ 1. Note that the spectral entropy does not distinguish between 
high and low wavenumber modes, and for this reason is less useful than (21) or (22) for 
assessing mixedness. 

There is broad agreement between the rankings of the eigenpictures according to the 
Da, D2 and a complexities. Figure 6 shows the first few eigenvalues at the 4, 6 and 
8 diameter stations plotted in order of increasing D2-complexity of the corresponding 
eigenpicture. At the 4 diameter station the simplest, almost de, eigenfunction contributes 
most to the flow. Increasingly complex eigenfunctions carry decreasing energies. At the 
6 diameter station, there is no longer an almost dc eigenfunction and the mode carrying 
the most energy has two cells and odd symmetry about the centerline. Additionally, 
the second largest eigenvalue corresponds to the sixth least simple eigenpicture. This 
four-celled mode (also recognizable as the second eigenpicture at the 4 diameter station) 
carries most energy at the 8 diameter station. Here simpler eigenpictures contribute less 
to the flow's structure, indicating a more complex, better mixed flow. 
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Conclusions 

This paper has focused on the problem of mixing and mixing assessment. The K-L 
procedure applied to data collected from a jet in crossflow provides optimal bases for 
the analysis of the flow. It is found that better mixed flows are characterized by the 
dominance of spatially complex eigenfunctions. Qualitative measures of the complexity 
are presented and it is anticipated that this technique will provide a sensitive metric of 
the mixedness of flows in a wide variety of applications. 
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WAVELETS AND THE ANALYSIS OF ASTRONOMICAL OBJECTS 

A l b e r t  B I J A O U I -  U R A  C N R S  1361 A . F r e s n e l  
Observatoire de la C6te d'Azur B.P. 139 F-06003 NICE CEDEX 

I.The hierarchical structure of the Universe components. 

1.The observations. 
The analysis of the sky shows many kinds of non stellar components: planets and 

other solar system objects, planetary nebulae, neutral,  ionised and molecular clouds, 
star clusters, galaxies, clusters of galaxies, large scale structural  features, etc.. Each 
of these objects are irregular patterns,  which cannot be fully described with analytical 
models. 

The irregularity is generally associated to a hierarchical structure: a feature is often 
included in a larger one, which can also be a part of a larger structure, etc.. The analysis 
of quite all the listed components shows the existence of a such hierarchy. For example, 
the molecular clouds, in which generally stars born, are very complex structures, often 
described as fractals. Many galaxies show sets of non stellar components which seem 
hierarchically distributed. 

Charlier [1] introduced the hierarchical structure of the Universe in years 20 taking 
into account the apparent distribution of the brighest galaxies. Neyman's statistical 
model [2] was based on a two-level hierarchy. This model was complex and was not 
developed to a larger number of levels. The philosophy about the mat ter  distribution 
of the Universe evolved toward the use of the correlation function [3]. It is only recently 
that  the existence of superclusters, filaments, sheets and voids was seriously considered 
[4] giving a new interest to hierarchical structures. 

2.The hierarchical structures. 
The first new approach was due to B.Mandelbrot [5] with the introduction of the 

fractal structures. Beyond the mathematical  formalism, this work gives a new insight 
for natural  structures, rejecting the idea of regular patterns,  described with analytical 
models. For classical fractals the hierarchical structure is statistically uniform. At the 
opposite, multifractals can show an innovation at each scale, such as it can be generally 
observed. It is the reason why multifractal models fit quite well to the distribution of 
the galaxies [6]. 

For signal processing, the knowledge of the generating stochastical process is es- 
sential. For example, Wiener filter results from a Gaussian process, while Kalman one 
is derived from a Markovian process. Hierarchical structures are associated to other 
kinds of process, containing fractal and multifractal models. The identification of the 
underlying process can provide tools in order to generate similar structures with the 
minimum of parameters.  
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The existence of hierarchical structures are connected to the physical processes 
which are involved. Linear physical phenonema generate sets of independant struc- 
tures, without coupling. Hierarchical structures are necessarly connected to non linear 
phenomena such those involved to describe turbulent flows. 

3.The main questions. 
Hierarchical structures can be analysed component by component. But, a such 

analysis is not generally sufficient to furnish a complete description. We consider that  
the irregularity are not a noisy-like feature but contains a part of the information on 
the basic stochastical process. The analysis of hierarchical structures need to give an 
adequate solution to some questions: 
*In what conditions we can say that  we detect some element of the hierarchy? 
*How to describe the different components? 
. W h a t  global statistical indicators we can furnish for the modeling? 
*How to classify the structures? 
*How to generate images which look like the observed objects? 

We expected that  the Wavelet Transform was the tool allowing us to build an 
analysis taking into account a11 the constraints. 

II.The wavelet transform. 

1.The continuous wavelet transform. 
Morlet-Grossmann [7] definition for a 1D signal f (x)  E L2(R) is: 

c(~, b) = ~ f(.)g*( )d. 

z* designs the conjugate of z. g*(x) is the analysing wavelet, a (> 0) is the scale 
parameter, b is the position parameter. 

It is a linear transformation which is essential for numerical algorithms, statistical 
computation and understanding of the results. The wavelet transform is invariant under 
translation. The analysis does not depend on the origin of the coordinate frame. It is 
the general property of convolution operators. It is also invariant under dilatation. 
This is the property which gives its originality to the wavelet transform. We get a 
mathematical  microscope the properties of which do not change with the magnification. 

2.The main restoration formula and the physical interpretation. 
Consider now a function C(a, b) which is the wavelet transform of a given function 

f (z ) .  It was shown [7] that  f(z) can be restored with the formula: 

1 f(a~)=-C-gg~o+°°//~aC(a'b)g(Z-b)da'dba a 2 

where: 

/0+= 
The reconstruction is only available if Cg is defined (admissibility condition). This 

is generally true if ~(0) = 0, i.e. the mean of the wavelet function is 0. 
This formula gives another insight on the transformation. The function is the sum 

of wavelets which are obtained by translation and dilatation of a given pattern.  The 
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amplitude of each wavelet is the correlation (scalar product) of the function with the 
wavelet. The value of the function at a given point is the sum of the weighted wavelet 
values at this point. 

Other L2(R) representations provides such an insight, but the scalar products are 
done with different patterns leading to some difficulties to interprete the coefficients in 
physical terms. With the wavelet transform, we only work with one pattern. 

The reconstruction formulae give a function f (z)  even if the coefficients are not 
provided by a wavelet transform. This situation is common in image processing. For 
example, we may threshold the wavelet transform in order to keep only the significant 
coefficients. The resulting function Co(a, b) does not belong to the subset S of L~(R *+ × 
R) generate by all the wavelet transforms. 

If we inverse Co(a,b) we get a function fo(z) which gives a wavelet transform 
Cl(a, b). The operator linking Co(a, b) to Cl(a, b) is called the reproducing kernel. This 
operator plays an important part in the case of restoration problems under constraints 
(thresholding, positivity, partiallity, etc.). 

3.The two-dimensional continuous wavelet transform. 
Many 2D extensions of the continuous wavelet transform are possible: 

eFrom identical dilatations on coordinates, using an isotropic wavelet function; 
eFrom independant dilatations; 
eFrom identical dilatations, with rotation of the wavelet pattern in Fourier space, using 
an anisotropic wavelet function [8]; 
oFrom independant dilatations and rotation. 

The dimension of the resulting transform depends of the choice: 3 for the first one, 
4 for the two following ones, and 5 for the last one. That is one of the reasons which led 
us to choice to work with an isotropic wavelet. Another reason lies in the physical data 
interpretation. An isotropic wavelet transform provides an isotropic vision from easily 
understood values. 

4.The direct discrete wavelet transform. 
In classical image processing the discretisation is guided by the well-known Shan- 

non's sampling theorem. If Fourier transform ](u) of a given function f (z)  is different 
of 0 only in the frequency band Iv < vci, the function can be exactly computed from a 
set of samples f(nh),  where n E Z. The sampling set h must be smaller than 1 ~-~. vcis 
generally called the cut-off frequency. 

The use of the wavelet transform with a computer can be foreseen through this 
theorem. We can process signal with a cut-off frequency. We have to work in Fourier 
space, computing the transform scale by scale. The number of elements for a scale can 
be reduced, if the frequency bandwith is also reduced. This is available only for wavelet 
having also a cut-off frequency. The Littlewood-Paley decomposition [9] provides a very 
nice illustration of the reduction of elements scale by scale. It is based on an iterative 
dichotomy of the frequency band. 

Littlewood-Paley's decomposition provides a discrete wavelet transform leading to 
a perfect restoration with a pyramidal set of data. We can generalise the discretisation 
with a step proportional to the scale a.bo, and with a logarithmic discretisation for the 
scale a = a~ (figure 1). The dyadic wavelet transform corresponds to a0 = 2. 
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The sampling theorem is easily extended to two dimensional functions. Generally 
the sample is done on a square grid. 

5.Wavelets and the Multiresolution Analysis. 
S.Mallat [10] introduced the concept of multiresohtion analysis in order to bring 

a description of a signal or an image from a pyramidal set of details. This work gave 
a new insight on some previous coding techniques. This approach is an extension of 
Littlewood-Paley decomposition to a large class of wavelets. 

The multiresolution analysis is based on an increasing sequence of closed linear 
subspace Vj, j E Z of L2(R). A function f(2)  is projected at each step j on the subset 
Vi. This projection is defined by the scalar product cj(k) of f (2)  with the function ¢(z) 
which is dilated and translated: 

cj(k) = <  f(z)12J¢(2Jz - k) > 

¢(2) is named the scaling function of the analysis. Its main property lies in the following 
relation: 

1 2 
~¢(~) = Z h ( ~ ) ¢ ( 2  - ~) 

7b 

Or, in Fourier space: 
~(2~)  = ~(~).~(~) 

where/z(t,) is a 1-periodic function. This relation permits to compute the set {cj(k)} 
from {cj+l(k)}: 

cj(k) = Z h(~ - 2k)cs+l(~) 
n 

At each step, the number of scalar products is divided by 2. An information is lost, 
and step by step the signal is smoothed. The remaining information can be restored 
using the complementary subspace Wj of V/in Vj+I. This subspace can be generated 
by a suitable wavelet function ¢(2) with translation and dilation. In Fourier space we 
have: 

~ ( 2 ~ )  = ~(~)~(~) 
where ~(r,) is another 1-periodic function. 

We compute the scalar products < f(z)i2J¢(2Jz - k) > with: 

~b 

With this analysis, we have built the first part of a filter bank [10]. The restoration 
is performed with (figure 1): 

l 

The set of filters must satisfy the following relations: 

h(~)~(~) + ~(~)~(~) = 1 
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Figure 1: Decomposition and Restoration with a filter bank. 
In the decomposition, the signal is successively smoothed with the two filters H (low frequencies) and 
G (high frequencies). Each resulting image is decimated by suppression of one sample on two. The 
high frequency signal is left, and we iterate with the low frequency signal. In the reconstruction, we 
restore the sampling by inserting a 0 between two samples, then we smoothed with the conjugate filters 
/~r and G and we add the resulting signals. We iterate up to smallest scales. 

The  mult i resolut ion analysis furnishes a remarkable  f ramework to code a signal, 
and more  generally an image,  with a pyramida l  set of values. 

III.Some astronomical Applications. 

1.General  applications. 
The h u m a n  vision is based on a pyramida l  scheme of the informat ion f rom the 

highest scales, giving the general feeling, to the smallest ones connected to the details 
[11]. The  wavelet t r ans form unfolds the information on the scale axis. The compari-  
son between two images corresponds to the s tudy of the intersection of two pyramids .  
Some technical applicat ions of the use of the wavelet t ransform to as t ronomical  imagery  
derived f rom this scheme: 
eGeometrica] match ing  between two images: We achieve a match ing  procedure  [12] 
using the wavelet t ransform.  The  main  idea lies in the pyramidal  vision provided by 
the t ransform.  We s tar t  to identify large scale structures,  with a poor  accuracy. Then 
the scale is decreased, and the match ing  is done on smaller s tructures,  increasing the 
accuracy. 
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• Optimal Image Addition: The wavelet transform provides a very nice framework to 
obtain an optimal addition taking into account the variation of the resolution [12]. Each 
image is splitted into the wavelet space. For each scale, we weight wavelet images taking 
into account the amount of information given by each one. 
• Detection of different stuctural elements: We have built a new procedure in order to 
detect and measure the objects on an astronomical image [13]. The detection of the 
statistically significant maxima in the Wavelet space is done. 
• Smoothing and Image Restoration: The detection technique on the pyramid leads us 
to a new way in image smoothing and restoration based on the thresholding of the 
wavelet images [14]. 

2.Application to the study of the structure of the Universe. 
The use of the wavelet transform is essentially guided by the study of hierarchically 

structured objects. The fractal or multifractal structure of natural objects was analysed 
by many authors [15]. As it was shown [16,17], the wavelet transform is a very nice tool 
for these studies. We start this analysis on the structure of the universe from the galaxy 
counts [18]. It is clear for us that this approach may be applied to the structure of a 
large set of astronomical objects like the HII emissive regions, the molecular clouds, the 
irregular galaxies, the planetary nebulae, etc.. 

The counts of galaxies are the first step allowing us to determine the distribution 
of matter in the Universe. We consider a galaxy count as an observation of a Poissonian 
process. We admit that the galaxies are distributed according an unknown density law, 
but their positions are independant. Consequently the catalogue of positions (z~, Yi) is 
transform into an image I(z, y) built as a sum of Dirac peaks: 

i 

The computation of the wavelet transform of the image I(x, y) becomes very easy: 

C(a,b=,b~)= 1 ~ xi-b= Yi-bu - g * (  , ) 
a a a 

i 

The wavelet function was choosen isotropic, and well localised in the direct and the 
frequency spaces. The rnezican hat fits well to these conditions: 

g(r) (2 - r2)e- ~ 

The analysis of the wavelet transform is done scale after scale. For each one we 
attribute to a structural element a probability to be real according to a theorical dis- 
tribution law. Scanning along the scale axis, we are able to extract the hierarchical 
structure. We have processed, often in collaboration with other astronomers, many 
catalogues of galaxies: a owner count in the Coma supercluster [18], a catalogue of the 
Coma cluster [19], a part of the CfA slide in the Universe [20], the Principal Catalogue 
o/ Galazies [21]. The hierarchy is always present. For example, on figure 2 we have 
plotted the used catalogue of Coma supercluster. We have superimposed the analysis 
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Figu re  2: Groups  and  Voids de tec t ion  in  a field of the  C o m a  superc lus te r .  

We have  p lo t t ed  the  ca ta logue  resu l t ing  from an  a u t o m a t e d  count  of galaxies .  An image  bu i l t  from th i s  

ca ta logue  was ana lysed  w i t h  the wavele t  t ransform.  The  pos i t ions  of the  g roups  and  the  voids were 

ex t r ac t ed  after  a s t a t i s t i ca l  ana lys i s  of the  t ransform.  A s imple  mode l ing  of the  resul t s  was done  w i t h  an 

an i so t rop ic  G a u s s l a n  model .  We have  p lo t t ed  the  contour  l ines  co r respond ing  to the  p robab i l i t y  99.5% 
t h a t  the  wavele t  coefficient values  canno t  be h igher  t h a n  the  measu red  ones for a r a n d o m  d i s t r ibu t ion .  

Groups  cor respond  to sol id  l ines,  whi le  voids are p lo t t ed  in  da shed  l ines.  The  l im i t s  of th is  ana lys i s  

can  be  forseen. 
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obtains from the detection of groups and voids with the wavelet transform at each scale. 
4 scales was used for the analysis. A faint hierarchical structure can be detected. 
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